Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T16:12:03.006Z Has data issue: false hasContentIssue false

Single Source CVD of LiAlO2

Published online by Cambridge University Press:  10 February 2011

Wonyong Koh
Affiliation:
Advanced Materials Division, KRICT, 100 Chang-dong, Yusong-gu, Taejon 305–343, SOUTH KOREA, yunsukim@pado.krict.re.kr
Su-Jin Ku
Affiliation:
Advanced Materials Division, KRICT, 100 Chang-dong, Yusong-gu, Taejon 305–343, SOUTH KOREA, yunsukim@pado.krict.re.kr
Yunsoo Kim
Affiliation:
Advanced Materials Division, KRICT, 100 Chang-dong, Yusong-gu, Taejon 305–343, SOUTH KOREA, yunsukim@pado.krict.re.kr
Get access

Abstract

We successfully deposited LiAlO2 films on Si substrates at 400–600 °C by single source chemical vapor deposition using a heterometallic compound, Li(O'Pr)2Al(CH3)2, which contains Li, Al, and O at the same 1:1:2 ratio as LiAlO2. Li(O'Pr)2Al(CH3)2 is sufficiently volatile to be vapor-transported at 50 °C. Elastic recoil detection and Rutherford backscattering spectroscopy analyses of a deposited film indicate that the film is stoichiometric (Li:Al:O = 1.0:1.0:2.0) and contains a few atomic percent hydrogen (5 %) and carbon (2 %). Depth profile analysis of X-ray photoelectron spectroscopy also confirms the 1:1 ratio of metal contents in the films. As-deposited films were amorphous, however, crystallized to β- or γ-LiA1O2 after annealing at 950 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Detchprohm, T., Amano, H., Hiramatsu, K., and Akasaki, I., J. Cryst. Growth 128, 384390 (1993)Google Scholar
2. Xiao, R. F., Sun, X. W., Li, Z. F., Cue, N., Kwok, H. S., Liu, Q. Z., and Lau, S. S., J. Vac. Sci. Technol. A 15, 22072213 (1997)Google Scholar
3. Nicholls, J. F. H., Gallapher, H., Henderson, B., Trager-Cowan, C., Middleton, P. G., O'Donnell, K. P., Cheng, T. S., Foxon, C. T., and Chai, B. H. T. in Gallium Nitride and Related Materials, edited by Ponce, F. A., Dupuis, R. D., Nakamura, S., and Edmond, J. A. (Mater. Res. Soc. Proc. 395, Pittsburgh, PA, 1996), pp. 535539.Google Scholar
4. Kryliouk, O. M., Dann, T. W., Anderson, T. J., Maruska, H. P., Zhu, L. D., Daly, J. T., Lin, M., Norris, P., Chai, H. T., Kisker, D. W., Li, J. H., and Jones, K. S. in III-V Nitrides, edited by Ponce, F. A., Moustakas, T. D., Akasaki, I., and Monemar, B. A. (Mater. Res. Soc. Proc. 449, Pittsburgh, PA, 1997), pp. 123128.Google Scholar
5. Hellman, E. S., Liliental-Weber, Z., and Buchanan, D. N. E., MRS Internet J. Nitride Semicond. Res. 2, 30 (1997).Google Scholar
6. Wernberg, A. A., Gysling, H. J., Filo, A. J., and Blanton, T. N., Appl. Phys. Lett. 62, 946948 (1993).Google Scholar