Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T14:52:49.074Z Has data issue: false hasContentIssue false

Size and critical thickness evolution during growth of stacked layers of InAs/InP(001) quantum wires studied by in situ stress measurements

Published online by Cambridge University Press:  01 February 2011

David Fuster
Affiliation:
Instituto de Microelectrónica de Madrid (CNM-CSIC), Tres Cantos, Madrid, Spain.
María Ujué González
Affiliation:
Instituto de Microelectrónica de Madrid (CNM-CSIC), Tres Cantos, Madrid, Spain.
Luisa González
Affiliation:
Instituto de Microelectrónica de Madrid (CNM-CSIC), Tres Cantos, Madrid, Spain.
Yolanda González
Affiliation:
Instituto de Microelectrónica de Madrid (CNM-CSIC), Tres Cantos, Madrid, Spain.
Teresa Ben
Affiliation:
Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cádiz, Puerto Real, Cádiz, Spain.
Arturo Ponce
Affiliation:
Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cádiz, Puerto Real, Cádiz, Spain.
Sergio I. Molina
Affiliation:
Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cádiz, Puerto Real, Cádiz, Spain.
Get access

Abstract

Size and spatial distribution homogeneity of nanostructures is greatly improved by making stacks of nanostructures separated by thin spacers. In this work we present in situ and in real time stress measurements and reflection high energy electron diffraction (RHEED) observations and ex situ transmission electron microscopy (TEM) characterization of stacked layers of InAs quantum wires (QWr) separated by InP spacer layers, d(InP), of thickness between 3 and 20 nm. For d(InP) < 20 nm, the amount of InAs involved in the newly created QWr from the 2nd stack layer on, exceeds that provided by the In cell. Our results suggest that in those cases InAs 3D islands formation starts at the P/As switching and lasts during further InAs deposition. We propose an explanation for this process that is strongly supported on TEM observations. The results obtained in this work imply that concepts like the existence of a critical thickness for 2D-3D growth mode transition should be revised in correlated QWr stacks of layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xie, Q., Madhukar, A., Chen, P. and Kobayashi, N. P., Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
2. Tersoff, J., Teichert, C. and Lagally, M. G., Phys. Rev. Lett. 76, 1675 (1996).Google Scholar
3. Lita, B., Goldman, R. S., Philips, J. D., Bhattacharya, P. K., Appl. Phys. Lett. 74, 2824 (1999).Google Scholar
4. Alén, B., Martinez-Pastor, J., González, L., García, J. M., Molina, S. I., Ponce, A. and García, R., Phys. Rev. B 65, 241301 (2002).Google Scholar
5. González, L., García, J. M., García, R., Briones, F., Martínez-Pastor, J. and Ballesteros, C., Appl. Phys. Lett. 76, 1104 (2000).Google Scholar
6. Alén, B., Martínez-Pastor, J. García-Cristóbal, A., González, L. and García-Cristóbal, J. M., González, L. and García, J. M., Appl. Phys. Lett. 78 4025 (2001).Google Scholar
7. Mu, X., Zotova, I. B., Ding, Y. J., Yang, H. and Salamo, G. J., Appl. Phys. Lett. 79, 1091 (2001).Google Scholar
8. González, M U., González, Y. and González, L., Appl. Phys. Lett. 81, 4162 (2002).Google Scholar
9. González, M. U., González, L., García, J. M., González, Y., Silveira, J. P., Briones, F., Microelectronics Journal 35, 13 (2004).Google Scholar
10. Nakata, Y., Sugiyama, Y., Futatsugi, T., Yokoyama, N., J. Cryst. Growth 175/176, 713 (1997).Google Scholar
11. García, J. M., González, L., González, M. U., Silveira, J. P., González, Y., and Briones, F., J. Cryst. Growth 227–228, 975 (2001).Google Scholar
12. Gutiérrez, H. R., Cotta, M. A., Bortoleto, J. R. R., De Carvalho, M. M. G., J. Appl. Phys., 92, 7523 (2002).Google Scholar
13. Wang, , Zhao, F., Peng, Y., Jin, Z., Li, Y., Liu, S., Appl. Phys. Lett. 72, 2433 (1998).Google Scholar
14. Yoon, S., Moon, Y., Lee, T., Yoon, E., Appl. Phys. Lett., 74, 2029 (1999)Google Scholar
15. Yang, H., Ballet, P., Salamo, G. J., J. Appl. Phys. 89, 7871 (2001).Google Scholar
16. González, M. U., García, J. M., González, L., Silveira, J. P., González, Y., Gómez, J. D. and Briones, F.. Appl. Surf. Science 188, 188192 (2002).Google Scholar