Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-12T18:31:13.163Z Has data issue: false hasContentIssue false

Size and shape dependent level structure in CdSe quantum rods

Published online by Cambridge University Press:  11 February 2011

Eli Rothenberg
Affiliation:
Institute of Chemistry, and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Taleb Mokari
Affiliation:
Institute of Chemistry, and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Uri Banin
Affiliation:
Institute of Chemistry, and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
David Katz
Affiliation:
Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Tommer Wizansky
Affiliation:
Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Oded Millo
Affiliation:
Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Get access

Abstract

Optical spectroscopy and Scanning Tunneling Microscopy are used to study the size and shape dependence of the electronic states in CdSe quantum rods. The quantum rods were grown using colloidal chemistry synthesis methods, with good control over size and size distribution. Samples having average rod dimensions ranging from 10 to 60 nm in length and 3.5 to 7 nm in diameter, with aspect ratios varying between 3 to 12, were investigated. Both optical (at 10 K) and tunneling (at 4.2 K, on single rods) spectra show that the level structure depends primarily on the rod diameter and not on length. With increasing diameter, the band gap and the excited state level spacings shifted to the red. The level structure is assigned using a multi-band effective-mass model, showing relatively good agreement with experiment. We shall also discuss the effect of single electron charging on the tunneling spectra, possibly reflecting the quantum rod level degeneracy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alivisatos, A. P., Science 271, 933 (1996).Google Scholar
Millo, O., Katz, D., Cao, Y. W., and Banin, U., Phys. Rev. Lett. 86, 5751 (2001).Google Scholar
3. Klimov, V., Mikhailovsky, A., Xu, S, Malko, A, Hollingsworth, J.A., Leatherdale, C.A., Eisler, H.J. and Bawendi, M.G., Science 290, 314 (2000).Google Scholar
4. Kazes, M., Lewis, D. Y., Ebenstein, Y., Mokari, T., and Banin, U., Adv. Mater. 14, 317 (2002).Google Scholar
5. Tessler, N., Medvedev, V., Kazes, M., Kan, S. H., and Banin, U., Science 295, 1506 (2002).Google Scholar
6. Bruchez, M., Moronne, M., Gin, P., Weiss, S. and Alivisatos, A.P., Science 281, 2013 (1998).Google Scholar
7. Peng, X.G., Manna, L, Yang, W.D., Wickham, J., Scher, E., Kadavanich, A. and Alivisatos, A.P., Nature (London) 404, 59 (2000).10.1038/35003535Google Scholar
8. Hu, J. T., Li, L.S., Yang, W.D., Manna, L., Wang, L.W. and Alivisatos, A.P., Science 292, 2060 (2001).Google Scholar
9. Banin, U., Cao, Y. W., Katz, D., and Millo, O., Nature (London) 400, 542 (1999).Google Scholar
10. Norris, D. J. and Bawendi, M.G., Phys. Rev. B 53, 16338 (1996).Google Scholar
11. Banin, U., Lee, C.J., Guzelian, A.A., Kadavanich, A.V., Alivisatos, A.P., Jaskolski, W., Bryant, G.W., Efros, A.l. and Rosen, M., J. Chem. Phys. 109, 2306 (1998).Google Scholar
12. Bakkers, E. P. A. M. and Vanmaekelbergh, D., Phys. Rev. B 62, R7743 (2000).Google Scholar
13. Bakkers, E. P. A. M., Hens, Z., Zunger, A., Franceschetti, A., Kouwenhoven, L.P., Gurevich, L. and Vanmaekelbergh, D., Nano Lett. 1, 551 (2001).Google Scholar
14. Katz, D., Millo, O., Kan, S. H., and Banin, U., Appl. Phys. Lett. 79, 117 (2001).Google Scholar
15. Franceschetti, A. and Zunger, A., Phys. Rev. B 62, 2614 (2000).Google Scholar
16. Niquet, Y. M., Delerue, C., Allan, G. and Lannoo, M., Phys. Rev. B 65, 165334 (2002).Google Scholar
17. Ekimov, A. I., Hache, F., Schanneklein, M.C., Ricard, D., Flytzanis, C., Kudryavtsev, I.A., Yazeva, T.V., Rodina, A.V. and Efros, A.L., J. Opt. Soc. Am. B 10, 100 (1993).Google Scholar
18. Li, X. Z. and Xia, J. B., Phys. Rev. B 66, 115316 (2002).Google Scholar
19. Hu, J. T., J. Phys. Chem. 106, 2447 (2002).Google Scholar
20. Manna, L., Scher, E. C., and Alivisatos, A.P., J. Am. Chem. Soc. 122, 12 700 (2000).Google Scholar
21. Peng, Z. A. and Peng, X., J. Am. Chem. Soc. 123, 1389 (2001).Google Scholar
22. Tews, M., and Pfannkuche, D., Phys. Rev. B 65, 073307 (2002).Google Scholar
23. Li, L. S., Hu, J. T., Yang, W. D., and Alivisatos, A. P., Nano Lett. 1, 349 (2001).Google Scholar
24. Sercel, P. C. and Vahala, K. J., Phys. Rev. B 42, 3690 (1990).Google Scholar
25. Katz, D., Wizansky, T., Millo, O., Rothenberg, E., Mokari, T., and Banin, U., Phys. Rev. Lett. 89, 86801 (2002).Google Scholar
26. Brus, L. E., J. Chem. Phys. 9, 4403 (1984).Google Scholar
27. Huynh, W. U., Dittmer, J. J., and Alivisatos, A. P., Science 295, 2425 (2002).Google Scholar