Skip to main content Accessibility help
×
Home

Size Dependent Particle Toxicity in Drosophila

  • Deborah J Gorth (a1), David M Rand (a2) and Thomas J Webster (a1)

Abstract

Nanotechnology, or the use of materials with one dimension less than 100nm, offers the ability to change particle reactivity by simply changing their size. This novel property of nanomaterials is used to create more effective medical treatments for cancer, tissue engineering and regenerative medicine, but the influence of nanoparticle size on environmental toxicity has not been thoroughly addressed to date. This study examines the influence of the size of silver particles on drosophila egg development by exposing their eggs to particle concentrations ranging from 10ppm-100 ppm of silver. Size, chemistry and agglomeration of the silver particles are evaluated using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS). This analysis confirmes individual silver particle size in the ranges of 20-30nm, 100nm and 500-1,200 nm with similar chemistry. DLS and TEM data also indicates agglomeration in water; with the TEM images showing individual particles in the correct size range, but the DLS z-average sizes of the silver nanoparticle are 782 ± 379 nm for the 20-30nm silver nanoparticles, 693 ± 114 nm for the 100nm silver nanoparticles and 508 ± 32 nm for the 500-1,200nm silver particles. Most importantly, here we show significantly more drosophila egg toxicity when exposed to larger, non-nanometer, silver particles. Upon exposure to silver nanoparticles sized 20-30nm, drosophila eggs do not exhibit a statistically significant (p<0.05) decrease in their likelihood to pupate, but eggs exposed to larger silver particles (500-1,200nm) are 91% (±18%) less likely to pupate. Exposure to silver nanoparticles reduces the percentage of pupa able to emerge as adults. At 10ppm of silver particle exposure, only 57% (± 48) of the pupa exposed to 20-30nm silver particles become adults whereas 89% (±25) of the control group becoem adults and 94%(±52) and 91%(±19) of the 500-1,200nm and 100nm group, respectively, reached adulthood. In this manner, this paper provides evidence that nanoscale silver particles (<100nm) are less toxic to drosophila eggs than conventional (>100nm) sized silver particles.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Size Dependent Particle Toxicity in Drosophila
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Size Dependent Particle Toxicity in Drosophila
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Size Dependent Particle Toxicity in Drosophila
      Available formats
      ×

Copyright

References

Hide All
1. Colvin, V.L., Nature Biotechnology 21, 1166 (2003).
2. Auffan, M., Bottero, J.Y., Lowry, G.V., Jolivet, J.-P., and Wiesner, M.R.. Nature Nanotechnology 4, 635 (2009).
3. The Project on Emerging Nanotechnologies from, http://www.nanotechproject.org/inventories/consumer/analysis_draft/.
4. Luoma, S.N.. Woodrow Wilson International Center for Scholars 3, 67 (2008).
5. Xiaoke, H., Wang, P., Hwang, H.. Science of the Total Environment 407, 3070 (2009).

Keywords

Size Dependent Particle Toxicity in Drosophila

  • Deborah J Gorth (a1), David M Rand (a2) and Thomas J Webster (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed