Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T11:38:25.773Z Has data issue: false hasContentIssue false

Size Effects in Bi-Sb Solid Solutions Thin Films

Published online by Cambridge University Press:  14 March 2011

Elena I. Rogacheva
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., 61002, Kharkov, Ukraine
Dar’ya S. Orlova
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., 61002, Kharkov, Ukraine
Mildred S. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
Shuang Tang
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
Get access

Abstract

The room-temperature dependences of the electrical conductivity σ, Seebeck coefficient S, Hall coefficient RH, and the thermoelectric power factor P on the thickness (d=10–300 nm) of the thin films grown on mica substrates by thermal evaporation in vacuum of Bi-Sb solid solutions crystals with 4.5 at.% Sb were obtained. It was established that an increase in d up to ~ 200 nm leads to a change in kinetic coefficients and that in the thickness dependences of the thermoelectric properties, quantum oscillations were observed. It was shown that the monotonic component of the σ(T) dependence can be satisfactorily approximated by theoretical calculations based on the classical Fuchs - Sondheimer theory. The theoretically estimated period of oscillations is in a good agreement with the experimentally observed period.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rowe, D.M., CRC Handbook of Thermoelectrics, CRC Press (Boca Raton, London, New York, Washington, 1995) p.701.Google Scholar
2. Dresselhaus, M.S., Lin, Yu-Ming, Koga, T., Cronin, S.B., Rabin, O., Black, M.R., and Dresselhaus, G., In Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research III, ed. by Tritt, T.M. (Academic Press, San Diego, CA, 2001), pp. 1121.Google Scholar
3. Komnik, Yu.F., Physics of Metal Films. Size and Structure Effects [in Russian] (Nauka, Moscow, 1979) p. 270.Google Scholar
4. Subotowicz, M., Jalochowski, M., Mikolajczak, B., Mikolajczak, P., Phys. Stat. Sol. A. 17(1), 79 (1973).Google Scholar
5. Akhtar, S.M., Khawaja, E.E.. Phys. Stat. Sol. A. 87, 335340, (1985).Google Scholar
6. Kochowski, S. and Opilski, A., Thin Solid Films 48, 345 (1978).Google Scholar
7. Damodara Das, V. and Soundararajan, N., Phys. Rev. B 35(12), 5990 (1987).Google Scholar
8. Fuchs, K.. Proc. Cambridge Philos. Soc. 34, 100108 (1938).Google Scholar
9. Sondheimer, E.H.. Adv. Phys., 1(1), 1 (1952).Google Scholar
10. Mallik, R. C. and Damodara Das, V.. J..Appl. Phys., 98, 02371 (2005).Google Scholar
11. Mallik, R. C. and Damodara Das, V.. Vacuum 77(3), 275285 (2005).Google Scholar
12. Volklein, F. and Kessler, E.. Phys. Stat. Sol. (b) 143, 121 (1987).Google Scholar
13. Komnik, Yu.F., Nikitin, Yu.V., and Bukhshtab, E.I., Fiz. Nizk. Temp. 4(9), 1143 (1978) [Sov. J. Low Temp. Phys. 4 (9), 538 (1978)].Google Scholar
14. Ogrin, Yu.F. Lutskii, V.N., and Elinson, M.I., Sov. Phys. JETP Letters 3, 71 (1966)Google Scholar
15. Sandomirskii, V.B.. Soviet Phys. JETP 25, 101 (1967)].Google Scholar
16. Tavger, B.A. and Demikhovskii, V.Ya., Uspekhi Fiz Nauk 96, 61 (1968).Google Scholar
17. Favennec, M.M.E., Le Contellec, M., Le Traon, J.Y.. Thin Solid Films, 13(1), 73 (1972).Google Scholar
18. Favennec, M.P. et Le Contellec, M.. Solid State Communications. 13(2), 141 (1973).Google Scholar
19. Komnik, Yu.F., Nikitin, Yu.V., Bukhshtab, E.I., Fiz. Nizk. Temp. 1(2), 243 (1975).Google Scholar
20. Nikitin, Yu.V., Bukhshtab, E. I., and Komnik, Yu. F., Fiz. Nizk. Temp. 4(11), 1440 (1978) [ Sov. J. Low Temp. Phys. 4 (11), 679 (1978)].Google Scholar
21. Bukhshtab, E. I., Komnik, Yu.F., Nikitin, Yu. V. Sov. J. Low Temp. Phys. 4(8), 474 (1978).Google Scholar
22. Komnik, Yu. F., Nikitin, Yu.V., Bukhshtab, E. I. Sov. J. Low Temp. Phys. 4(10), 591 (1978)].Google Scholar
23. Eisenberg, N. and Tavger, B.T.. Thin Solid Films, 89(1), 57 (1982)Google Scholar
24. Brandt, N.B. and Chudinov, S.M., Zh. Eksper. Teor. Fiz. 59(5), 1494 (1970).Google Scholar
25. Traon, J.Y. J.Y., Combet, H.A. J. Phys. 30, 419 (1969).Google Scholar
26. Michenaud, J-P. and Issi, J.-P.. J. Phys. C: Solid State Phys. 5, 3061 (1972).Google Scholar
27. Rogacheva, E.I., Grigorov, S. N., Nashchekina, O.N., and Lyubchenko, S.. Appl. Phys. Let. 82(15), 2628 (2003).Google Scholar
28. Issi, J.P.. Austr. J. Phys., 32(6), 585 (1979).Google Scholar
29. Petrosyan, V.I., Molin, V.N., Dagman, E.I., Tavger, B.A., Skripkina, P.A., and Alexandrov, L.N.. Fizika metalov i metalovedenie. 31, 725 (1971)Google Scholar