Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T08:55:46.108Z Has data issue: false hasContentIssue false

Slater Transition in the Pyrochlore Cd2Os2O7

Published online by Cambridge University Press:  18 March 2011

D. Mandrus
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; and Department of Physics, The University of Tennessee, Knoxville, TN 37996
J. R. Thompson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; and Department of Physics, The University of Tennessee, Knoxville, TN 37996
L. M. Woods
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; and Department of Physics, The University of Tennessee, Knoxville, TN 37996
Get access

Abstract

Cd2Os2O7 crystallizes in the pyrochlore structure and undergoes a metal-insulator transition (MIT) near 226 K. Here we present resistivity, heat capacity, and magnetization results on Cd2Os2O7. Both single crystal and polycrystalline material were examined. We also present LAPW electronic structure calculations on Cd2Os2O7. We interpret the results in terms of a Slater transition. In this scenario, the MIT is produced by a doubling of the unit cell due to the establishment of antiferromagnetic order. A Slater transition--unlike a Mott transition--is predicted to be continuous, with a semiconducting energy gap opening much like a BCS gap as the material is cooled below TMIT.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sleight, A. W., Gillson, J. L., Weiher, J. F., and Bindloss, W., Solid State Comm. 14, 357 (1974).Google Scholar
2. Slater, J. C., Phys. Rev. 82, 538 (1951).Google Scholar
3. Matsubara, T. and Yokota, Y., in Proc. Int. Conf. Theor. Phys., Kyoto-Tokyo 1953 (Sci. Council Japan, Tokyo, 1954), p. 693.Google Scholar
4. Cloizeaux, J. Des, J. Phys. Radium, Paris 20, 606 (1959).Google Scholar
5. Fazekas, P., Lecture Notes on Electron Correlation and Magnetism (World Scientific, Singapore, 1999).Google Scholar
6. Mott, N. F., Metal-Insulator Transitions (Taylor and Francis, London, 1990).Google Scholar
7. Blaha, P., Schwarz, K., Sorantin, P., and Trickey, S. B., Comput. Phys. Commun. 49, 399 (1990).Google Scholar
8. Blacklock, K. and White, H. W., J. Chem. Phys. 71, 5287 (1979).Google Scholar
9. Donohue, P. C., Longo, J. M., Rosenstein, R. D., and Katz, L., Inorg. Chem. 4, 1152 (1965).Google Scholar
10. Wang, R. and Sleight, A. W., Mater. Res. Bull. 33, 1005 (1998).Google Scholar
11. Gruner, G., Rev. Mod. Physics 66, 1 (1994).Google Scholar
12. Reimers, J. N., Berlinsky, A. J., and Shi, A.-C., Phys. Rev. B 43, 865 (1991).Google Scholar
13. Subramanian, M. A., Aravamudan, G., and Rao, G. V. S., Prog. Solid State Chem. 15, 55 (1983).Google Scholar
14. Carter, S. A., Rosenbaum, T. F., Lu, M., Jaeger, H. M., Metcalf, P., Honig, J. M., and Spalek, J., Phys. Rev. B 49, 7898 (1994).Google Scholar
15. Carter, S. A., Yang, J., Rosenbaum, T. F., Spalek, J., and Honig, J. M., Phys. Rev. B 43, 607 (1991).Google Scholar