Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T04:15:05.320Z Has data issue: false hasContentIssue false

Small Angle Neutron Scattering Study of the Structure and Formation of Ordered Mesopores in Silica

Published online by Cambridge University Press:  28 February 2011

C. J. Glinka
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
J. M. Nicol
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
G. D. Stucky
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
E. Ramli
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
D. I. Margolese
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Q. Huo
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Get access

Abstract

The nanoscale structure and synthesis mechanisms of a recently developed class of inorganic mesoporous materials with ordered arrays of uniform mesopores have been investigated by small angle neutron scattering (SANS). SANS measurements with solvents imbibed into the pores to vary the scattering contrast demonstrate that the low angle diffraction peaks from these materials are entirely due to the pore structure and that the pores are fully accessible to both aqueous and organic solvents. SANS measurements on the concentrated cationic surfactant and silicate precursor solutions typically used in the synthesis of the mesopore materials indicate that the existence of preassembled supramolecular arrays that mimic the final pore structure is not essential for the synthesis of these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kresge, C. T. et al. , Nature, 359, 710712 (1992).Google Scholar
[2] Beck, J. S. et al. , J. Am. Chem. Soc., Vol. 114, No. 27, 1083410843 (1992).Google Scholar
[3] Davis, M. E. and Lobo, R. F., Chem. Mater., 4, 756768 (1992).Google Scholar
[4] Chen, C.-Y., Burkett, S. L., Li, H.-X. and Davis, M. E., Microporous Materials 2, 2734 (1993).Google Scholar
[5] Monnier, A., Schiuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R. S., Stucky, G. D., Krishnamurty, M., Petroff, P., Firouze, A., Janicke, M., Chmelka, B. F., Science, 2.1, 12991303 (1993).Google Scholar
[6] Chmelka, B. F., Firouze, A., Kumar, D., Huo, Q, Walker, S. J., Zasadzinski, J. A., Glinka, C. J., Nicol, J. M., Margolese, D., Stucky, G. D., Science (in press)Google Scholar
[7] Vartuli, J. C., Schmitt, K. D., Kresge, C. T., Roth, W. J., Leonowicz, M. E., McCullen, S. B., Hellring, S. D., Beck, J. S., Schlenker, J. L, Olson, D. H., Sheppard, E. W., Studies in Surface Science and Catalysis, 84, 5360 (1994).Google Scholar
[8] Auvray, X., Petipas, C., Anthore, R., Rico, I. and Lattes, A., J. Phys. Chem. 93, 74587464 (1989).Google Scholar
[9] Quirion, F. and Magid, L J., J. Phys. Chem. 90, 54355441 (1986).Google Scholar
[10] Huo, Q., Margolese, D. I., Ciesla, U., feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schuth, F. and Stucky, G. D., Nature 368, 317321 (1994).Google Scholar