Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T08:28:48.010Z Has data issue: false hasContentIssue false

Solid Solutions of AB2C4 Defect Semiconductors

Published online by Cambridge University Press:  28 February 2011

T.M. de Pascale
Affiliation:
Dipartimento di Scienze Fisiche and GNSM-CISM, Universita& 09124 Cagliari, Italy
M. Marinelli
Affiliation:
Dipartimento di Scienze Fisiche and GNSM-CISM, Universita& 09124 Cagliari, Italy
F. Meloni
Affiliation:
Dipartimento di Scienze Fisiche and GNSM-CISM, Universita& 09124 Cagliari, Italy
G. Mula
Affiliation:
Dipartimento di Scienze Fisiche and GNSM-CISM, Universita& 09124 Cagliari, Italy
M. Serra
Affiliation:
Istituto di Astronomia e Fisica Superiore and GNSM-CISM, Universita& 09124 Cagliari, Italy
A. Borghesi
Affiliation:
Dipartimento di Fisica and GNSM-CISM, Universita& 27100 Pavia, Italy
G. Guizzetti
Affiliation:
Dipartimento di Fisica and GNSM-CISM, Universita& 27100 Pavia, Italy
L. Nosenzo
Affiliation:
Dipartimento di Fisica and GNSM-CISM, Universita& 27100 Pavia, Italy
Get access

Abstract

AB2C4 defect semiconductors can be thought of as generalized zincblende compounds, in which the presence of two different cations and of vacant sites favours the formation of several crystalline phases. In this work we present a theoretical study of the structural stability of the ZnxCdl-xIn2S4 solid solutions. The end compounds crystallize in a layer (x = 1) and in a spinel structure (x = 0). Total energy first principle calculations have been performed for both phases and for various values of x. The theoretical structural stability diagram compares very well with experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.As a general reference : Proceedings of the 7th International Conference on Ternary And Multinary Compounds, edited by Deb, S.K. and Zunger, A. (MRS, Pittsburgh, 1987)Google Scholar
2. Wyckoff, R.W.G., CRYSTAL STRUCTURES (Interscience, New York, 1964)Google Scholar
3. Marinelli, M., Baroni, S. and Meloni, F., Phys. Rev. B 38, 8258 (1988)Google Scholar
4. Bernard, J.E. and Zunger, A., Phys. Rev. B 37, 6835 (1988)Google Scholar
5. Tarricone, L. and Zanotti, L., Mat. Chem. and Phys. 11, 161 (1984)Google Scholar
6. Meloni, F. and Mula, G., Phys. Rev. B 2, 392 (1970)Google Scholar
7. Pascale, T.M. de, Marinelli, M., Meloni, F., Mula, G. and Serra, M., Journal de Chimie Physique in pressGoogle Scholar
8. Marinelli, M., T.M. de Pascale, Meloni, F., Mula, G. and Serra, M., Physica Scripta in press.Google Scholar
9. Hulliger, F., PHYSICS AND CHEMISTRY OF MATERIALS WITH LAYERED STRUCTURES (D. Reidel Publ. Holland, 1976) Vol V Google Scholar
10. Kohn, W. and Vashista, P., THEORY OF THE INHOMOGENEUS ELECTRON GAS (Plenum, New York, 1983)Google Scholar
11. Kerker, G.P., J. Phys. C: Solid State Phys. 13, L189 (1980)Google Scholar
12. Davidson, E., METHODS IN COMPUTATIONAL MOLECULAR PHYSICS (Reidel, Dordrecht, 1983); S. Baroni and M. Marinelli, unpublishedGoogle Scholar
13. Monkhorst, H.J. and Pack, J.P., Phys. Rev. B 13, 5188 (1976)Google Scholar
14. Ceperley, D.M. and Alder, B.J., Phys. Rev. Lett. 45, 566 (1980)Google Scholar
15. Perdew, J. and Zunger, A., Phys. Rev. B 23, 5048 (1981)Google Scholar
16. Murnaghan, F.D., Proc. Natl. Acad. Sci. USA 30, 244 (1944)Google Scholar
17. Curti, M., Gastaldi, L., Lottici, P.P., Paorici, C., Razzetti, C., Viticoli, S. and Zanotti, L., J. Sol. State Chem. 69, 289 (1987)Google Scholar
18. Razzetti, C., Lottici, P.P. and Zanotti, L., I1 Nuovo Cimento D2, 2044 (1983)Google Scholar
19. Margaritondo, G., Stoffel, N.G. and Levy, F., J. Phys. C: Solid State Phys. 13, 277 (1980)Google Scholar