Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T08:40:19.529Z Has data issue: false hasContentIssue false

Solid State Amorphization in Silicide—Forming Systems

Published online by Cambridge University Press:  03 September 2012

L.J. Chen
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of, China
W.Y. Hsieh
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of, China
J.H. Lin
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of, China
T.L. Lee
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of, China
J.F. Chen
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of, China
J.M. Liang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of, China
M.H. Wang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of, China
Get access

Abstract

Solid phase amorphization has been found to occur in all refractory metal and a number of rare—earth and platinum group metal thin film on silicon systems. For Ti/Si, Zr/Si, Hf/Si, V/Si, Nb/Si and Ta/Si systems, the growth of amorphous interlayer (a—interlayer) was found to follow a linear law in the initial stage. Si atom was found to be the dominant diffusing species in the solid phase amorphization in Ti/Si, Zr/Si and Hf/Si systems. For the Y/Si system, the stability of amorphous interlayer depends critically on the composition of the amorphous films.

Auto–correlation function analysis was utilized to determine the structure of the amorphous interlayers. HRTEM in conjunction with the fast Fourier transform were applied to determine the first nucleated crystalline phase. Simultaneous presence of multiphases was observed to occur in a number of refractory metal/Si systems. Interesting electrical properties of amorphous interlayers were found for Ti/Si, Zr/Si and Hf/Si systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, W.L., Progr. Mat. Sci. 30, 81 (1988).Google Scholar
2. Walser, R.M. and Bene, R.W., Appl. Phys. Lett. 28, 624 (1976).Google Scholar
3. Tu, K.N. and Mayer, J.W., in Thin Films-Interdiffusion and Reactions, edited by Poate, J.M., Tu, K.N., and Mayer, J.W. (Wiley, New York, 1978) p. 359.Google Scholar
4. Nicolet, M.A. and Lau, S.S., in Materials and Process Characterization, edited by Einspruch, N.G. and Larrabee, G.R. (Academic, New York, 1983) p. 329.CrossRefGoogle Scholar
5. Miedema, A.R., Buschow, K.H.J. and Mal, H.H. van, J. Less-Common Metals, 49, 463 (1976).CrossRefGoogle Scholar
6. Cheng, J.Y., Wang, M.H., and Chen, L.J., Mater. Res. Soc. Symp. Proc. 187, 77 (1990).Google Scholar
7. Hsieh, W.Y., Lin, J.H., Chen, J.F., Liang, J.M., Luo, C.H., and Chen, L.J., unpublished work.Google Scholar
8. Herd, S.R., Tu, K.N., and Ahn, K.Y., Appl. Phys. Lett. 42, 597 (1983).Google Scholar
9. Abelson, J.R., Kim, K.B., Mercer, D.E., Helms, C.R., Sinclair, R., and Sigmon, T.W., J. Appl. Phys. 63, 689 (1988).Google Scholar
10. Lur, W. and Chen, L.J., Appl. Phys. Lett. 54, 1219 (1989).Google Scholar
11. Cheng, J.Y. and Chen, L.J., J. Appl. Phys. 68, 4002 (1990).CrossRefGoogle Scholar
12. Cheng, J.Y. and Chen, L.J., J. Appl. Phys. 69, 2161 (1991).Google Scholar
13. Wang, M.H. and Chen, L.J., J. Appl. Phys. 71, 5918 (1992).Google Scholar
14. Lee, T.L. and Chen, L.J., J. Appl. Phys. 73, 8528 (1993).Google Scholar
15. Hsieh, W.Y., Lin, J.H., and Chen, L.J., Appl. Phys. Lett. 62, 1088 (1993).Google Scholar
16. Liang, J.M. and Chen, L.J., Appl. Phys. Lett. 64 (in press, 1994).Google Scholar
17. Sinclair, R. and Konno, T.J., Mater. Res. Soc. Symp. Proc. 311, 3 (1993).Google Scholar
18. Liauh, H.R., Chen, M.C., Chen, J.F., and Chen, L.J., J. Appl. Phys. 74, 2590 (1993).Google Scholar
19. Holloway, K., Do, K.B., and Sinclair, R., J. Appl. Phys. 65, 474 (1989).Google Scholar
20. Tu, K.N., Herd, S.R., and Goesele, U., Phys. Rev. B 43, 1198 (1991).Google Scholar
21. Lee, T.L. and Chen, L.J., J. Appl. Phys. 75 (in press, 1994).Google Scholar
22. Fan, G.Y. and Cowley, J.M., Ultramicroscopy 17, 75 (1985).Google Scholar
23. Frank, J.. Computer Processing of Electron Microscope Images (Springer, Berlin 1980) p. 187.Google Scholar
24. Yamauchi, Y., Zaima, S., Mizuno, K., Kitamura, H., Koide, Y., and Yasuda, Y., J. Appl. Phys. 69, 7050 (1991).Google Scholar
25. Liauh, H.R., Chen, M.C., Chen, J.F., and Chen, L.J., Appl. Phys. Lett. 61, 2167 (1992).CrossRefGoogle Scholar