Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T19:48:52.919Z Has data issue: false hasContentIssue false

Solid State Reactions in Mechanically Deformed Composites in the Ni-Zr and the Ni-Ti Systems

Published online by Cambridge University Press:  21 February 2011

B. E. White
Affiliation:
Department of Physics, Applied Physics and Astronomy State University of New York at Binghamton, Binghamton, NY 13901
M. E. Patt
Affiliation:
Department of Physics, Applied Physics and Astronomy State University of New York at Binghamton, Binghamton, NY 13901
E. J. Cotts
Affiliation:
Department of Physics, Applied Physics and Astronomy State University of New York at Binghamton, Binghamton, NY 13901
Get access

Abstract

Differential scanning calorimetry and x-ray diffraction analysis were utilized to monitor solid state reactions in mechanically deformed Ni/Ti multilayered composites. Solid state reactions at temperatures less than = 650 K result in the formation of a highly disordered phase which is apparently amorphous.The subsequent nucleation and growth at higher temperatures of intermetallic compounds from the amorphous phase is examined. The relatively small thickness of amorphous material (less than 100 Å) which can be grown by solid state reaction in our Ni/Ti samples, combined with the indication that a disordered interface such as that produced by mechanical deformation facilitates these reactions in the Ni-Ti system, may provide some explanation for the relatively high degree of success experienced in the production of amorphous Ni- Ti by means of ball milling. Comparisons are made to results obtained in the Ni-Zr system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
2. Johnson, W. L., Prog. Mater. Sci. 30, 80 (1986).Google Scholar
3. Samwer, K., Phys. Rep. 161, 1 (1988).Google Scholar
4. Schwarz, R. B. and Johnson, W. L., J. Less-Common Met. 140, 1 (1988).Google Scholar
5. Cheng, Y. T., Johnson, W. L., and Nicolet, M. -A., Appl. Phys. Lett. 47,800 (1985).Google Scholar
6. Hahn, H. and Averback, R. S., Phys. Rev. B 37, 6537 (1988).Google Scholar
7. Vredenberg, A. M., Westendorp, J. F. M., Saris, F. W., van der Pers, N. M. and de Keijser, Th. H., J. Mater. Res. 1, 774 (1986).Google Scholar
8. Meng, W. J., Nieh, C., Ma, E., Fultz, B.,and Johnson, W. L.,J. Mater. Sci. Eng. 97, 87(1988)Google Scholar
9. Hahn, H., Averback, R. S., and Rothman, S. J., Phys. Rev. B 33, 8825 (1986).Google Scholar
10. Cotts, E. J., Meng, W. J., and Johnson, W. L., Phys. Rev. Lett. 57, 2295 (1986).Google Scholar
11. Schultz, L., in Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (North- Holland, Amsterdam, 1984) p.551; L. Schultz, in Proceedings of the Sixth International Conference on Liquid and Amorphous Metals, in Z. Phys. Chem., 156 (1987).Google Scholar
12. Highmore, R., Evetts, J., Greer, A. L. and Somekh, R. E., Appl. Phys. Lett. 50, 566 (1987).Google Scholar
13. Meng, W. J., Fultz, B., Ma, E., and Johnson, W. L., Appl. Phys. Lett. 51, 661 (1987).Google Scholar
14. Gachon, J. C. and Hertz, J., CALPHAD 7, 1 (1983).Google Scholar
15. Weeber, A. W., Loeff, P. I., and Bakker, H., J. Less-Common Met. 145, 293 (1988).Google Scholar
16. Buschow, K. H., J. Phys. F. 14, 593 (1984).Google Scholar
17. Altounian, Z., Guo-hua, Tu, and Strom-Olsen, J. O., J. Appl. Phys. 54, 3111 (1983).Google Scholar
18. Buschow, K. H., J. Phys. F 13,563 (1983).Google Scholar
19. Hoshino, K., Averback, R. S., Hahn, H., and Rothman, S. J., J. Mater. Res. 3, 55 (1988).Google Scholar
20. Meng, W. J., Cotts, E. J., and Johnson, W. L. in Interfaces. Superlattices and Thin Films, edited by Dow, J. D., Schuller, I. K., Hillard, J., Materials Research Society Symposia Proceedings, Vol.77 (Materials Research Society, Pittsburgh, 1987).Google Scholar
21. Clemens, B. M., J. Appl. Phys. 61,4525 (1987).Google Scholar
22. Clemens, B. M., Phys. Rev. B 33, 7615 (1986).Google Scholar
23. Clemens, B. M. and Gay, J. G., Phys. Rev. B 35 9337 (1987).Google Scholar
24. Wong, G. C., Johnson, W. L. and Cotts, E. J., to be published in J. Mat. Res..Google Scholar
25. Jongste, J. F., Hollanders, M., Thijsse, B., and Mittemeijer, E., Mat. Sci. Eng. 97, 101 (1988).Google Scholar
26. Cotts, E. J., Wong, G. C. and Johnson, W. L., Phys. Rev. B 37, 9049 (1988).Google Scholar
27. Atzmon, M., Verhoeven, J., Gibson, E. and Johnson, W. L., Appl. Phys. Lett. 45 1052(1984)Google Scholar
28. Enzo, S., Schiffini, L., Battezzati, L.,and Cocco, G., J. Less-Common Met. 140, 129 (1988).Google Scholar
29. Jackson, C. M., Wagner, H. J., and Wasilewski, R. J., NASA Technology Utilization Pub. SP51 10 (National Aeronautics and Space Administration, Washington, D. C., 1972).Google Scholar
30. Kissinger, H. E., Anal. Chem. 29, 1702 (1957).Google Scholar
31. Hood, G. M. and Schultz, R. J., Phil. Mag. 26, 329 (1972).Google Scholar
32. Nakajima, H., Koiwa, M., Minonishi, Y., and Ono, S., Trans. Jpn. Inst. Met. 24,655 (1983).Google Scholar
33. Schwarz, R.B. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).Google Scholar
34. Schwarz, R. B. and Petrich, R. R., J. Less-Common Met. 140, 171 (1988).Google Scholar
35. Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).Google Scholar
36. Hellstern, E. and Schultz, L., Appl. Phys. Lett. 48, 124 (1986).Google Scholar