Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T19:34:41.522Z Has data issue: false hasContentIssue false

Solution Processable Conducting Polymer: Polyaniline-Polyelectrolyte Complexes

Published online by Cambridge University Press:  16 February 2011

Linfeng Sun
Affiliation:
University of Rhode Island, Department of Chemistry, Kingston, RI 02881
Sze C. Yang
Affiliation:
University of Rhode Island, Department of Chemistry, Kingston, RI 02881
Get access

Extract

Conducting polymers have novel electrical and optical properties that are potentially useful for applications in electroluminescence display, rechargeable batteries, electrochromic windows, chemical sensors, electromagnetic shielding and anti-electrostatic films. However, these new materials are less adaptable to industrial processes than the traditional synthetic polymers. One of the problems is that conducting polymers are difficult to be solubilized in any solvent, thus lacking solution processability during a manufacturing process. In this article we discuss a new molecular complex of polyaniline that is soluble in water and in polar organic solvents.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Angelopoulos, M., Asturias, G. E., Ermer, S. P., Ray, A., Scherr, E. M., MacDiarmid, A.G., Akhtar, M., Kiss, Z., and Epstein, A. J., Mol. Cryst. Liq. Cryst., 160, 151 (1988);Google Scholar
Ontani, A., Abe, M., Ezoe, E., Doi, T., Miyata, T. and Miyake, A., Synthetic Metals, 55–57, 3696 (1993);Google Scholar
Tzou, K. and Gregory, V., Synthetic Metals, 53, 365 (1993).CrossRefGoogle Scholar
2. Shacklette, L. W., Han, C. C., Materials Research Society 1993 Fall Meeting, Boston, MA, Abstract, p 429.Google Scholar
3. Yue, L., Wang, Z. H., Cromack, K. R., Epstein, A. J. and MacDiarmid, A. G., J. Am. Chem. Soc., 113, 2665 (1991).CrossRefGoogle Scholar
4. Dao, L. H., Bergeron, J. Y., Chevalier, J. W., Ngnyen, M. T. and Paynter, R., Synth. Metals, 41, 655 (1991);CrossRefGoogle Scholar
Wei, Y., Focke, W. W., Wnek, G. E., Ray, A., MacDiarmid, A.G., J. Phys. Chem., 93, 495 (1989).CrossRefGoogle Scholar
5. Cao, Y., Treacy, G. M., Smith, P. and Heeger, A. J., Appl. Phys. Lett., 60, 2711 (1992);CrossRefGoogle Scholar
Cao, Y., Smith, P. and Heeger, A. J., Synthetic Metals, 48, 91 (1992).CrossRefGoogle Scholar
6. (a) Sun, L. and Yang, S. C., Polymer Preprints, 33, 376 (1992);Google Scholar
(b) Liu, J-M., Sun, L., Hwang, J-H. and Yang, S. C., Mat. Res. Soc. Symp. Proc., 247, 601 (1992).CrossRefGoogle Scholar
7. Sun, L., Yang, S.C., and Liu, J-M., Mat. Res. Soc. Symp. Proc. (1993), Vol. 328.Google Scholar
8. Kota, G. P., Sun, L., Yang, S. C. and Force, R., Ken, , Mat. Res. Soc. Symp. Proc. (1993), Vol. 328.Google Scholar
9. MacDiarmid, A. G. and Epstein, A. J., Mat. Res. Soc. Symp. Proc., 247, 565 (1992).CrossRefGoogle Scholar