Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-15T13:15:12.326Z Has data issue: false hasContentIssue false

Some Defect Types in Intermetallics and their Consequences

Published online by Cambridge University Press:  11 February 2011

Robert W. Cahn*
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, England
Get access

Abstract

This short introductory overview focuses on point defects and their practical implications, on antiphase domains, and also on a feature that is not always perceived as a defect – imperfect long-range order. All these defect types have consequences for mechanical behavior of various kinds; imperfect LRO also affects the superconducting behavior of A15s. Other unfamiliar defects in intermetallics, to be outlined, include ‘rattling atoms’ in certain thermoelectric materials. Geometry and dynamics of dislocations in intermetallics are left to other contributors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ren, X., Otsuka, K., and Kogachi, M., Scripta Mater. 41, 907 (1999).Google Scholar
2. Ren, X. and Otsuka, K., Phil. Mag. A 80, 467 (2000).Google Scholar
3. Kogachi, M., Minamigawa, S., and Nakahigashi, K., Acta Metall. 40, 1113 (1992).Google Scholar
4. Kogachi, M., Takeda, Y., and Tanahashi, T., Intermetallics 3, 129 (1995).Google Scholar
5. Cottrell, A.H., Intermetallics 3, 341 (1995).Google Scholar
6. Cottrell, A.H., Intermetallics 5, 467 (1997).Google Scholar
7. Shirai, Y., Araki, H., and Yamaguchi, M., Mater. Sci. Forum 363–365, 101 (2001).Google Scholar
8. Schaefer, H.-E., Frenner, K., and Würschum, R., Intermetallics 7, 277 (1999).Google Scholar
9. Wolff, J., Franz, M., Broska, A., Kerl, R., Weinhagen, M., Köhler, B., Braner, M., Faupel, F., and Hehenkamp, Th., Intermetallics 7, 289 (1999).Google Scholar
10. Chang, Y.A., Pike, L.M., Liu, C.T., Bilbrey, A.R., and Stone, D.S., Intermetallics 1, 107 (1993).Google Scholar
11. George, E.P. and Baker, I., Intermetallics 6, 759 (1998).Google Scholar
12. Chang, Y.A., in The Science of Alloys for the 21st Century–A Hume-Rothery Symposium Celebration, ed. Turchi, P.E.A., Shull, R.D. and Gonis, A. (TMS, 2000), p. 241.Google Scholar
13. Cahn, R.W., Contemp. Physics 42, 365 (2001).Google Scholar
14. Slack, G.A., in CRC Handbook of Thermoelectrics, ed. Rowe, D.M. (Chemical Rubber Co., 1995), p. 407.Google Scholar
15. Morelli, D.T. and Meisner, G.P., J. Appl. Phys. 77, 3777 (1995).Google Scholar
16. Sales, B.C., Mandrus, D., and Williams, R.K., Science 272, 1325 (1998).Google Scholar
17. Sales, B.C., Current Opinion in Solid State & Materials Science 2, 284 (1997).Google Scholar
18. Sykes, C. and Evans, H., J. Inst. Metals 58, 255 (1936).Google Scholar
19. Sykes, C. and Jones, F.W., Proc. Roy. Soc.(Lond.) 157, 213 (1936).Google Scholar
20. Cahn, R.W., ‘The place of atomic order in the physics of solids and in metallurgy’, in Physics of New Materials, ed. Fujita, E. (Springer, 1998), p. 179.Google Scholar
21. Morris, D.G., in Ordered Intermetallics - Physical Metallurgy and Mechanical Behaviour, ed. Liu, C.T., Cahn, R.W. and Sauthoff, G. (Kluwer, 1992), p. 123.Google Scholar
22. Yang, R., Botton, G.A., and Cahn, R.W., Acta Mater. 44, 3869 (1996).Google Scholar
23. Popov, L.E., Kozlov, E.V., and Golosov, N.S., phys. stat. sol. 13, 569 (1966).Google Scholar
24. Suryanarayana, C.. chapter 4 in Non-equilibrium Processing of Materials, ed. Suryanarayana, C. (Pergamon, 1999), p. 47.Google Scholar
25. Gialanella, S., Cahn, R.W., Malagelada, J., Suriñach, S., Barò, M.D., and Yavari, A.R., in Kinetics of Ordering Tranformations in Metals, ed. Haydn, C. and Vasudevan, V.K. (TMS 1992) p. 161. See also:Google Scholar
Cahn, R.W., Bull. Mater. Sci. (India) 22, 175 (1999).Google Scholar
26. Flükiger, R., article on A15 Compound Superconductors, in Concise Encyclopedia of Magnetic & Superconducting Materials, ed. Evetts, J. (Elsevier, 1992), p. 1.Google Scholar
27. Glowacki, B.A., Intermetallics 7, 117 (1999).Google Scholar
28. Moine, R., Eymery, J.P., and Grosbras, P., phys. stat. sol. (b) 46, 177 (1971).Google Scholar
29. Jang, J.S.C. and Koch, C.C., J. Mater. Res. 5, 498 (1990).Google Scholar
30. Mackenzie, K.J.D. and Smith, M.E., chapter 11, on “solid-state NMR of metals and alloys”, in Multinuclear Solid-State NMR of Inorganic Materials (Pergamon, 2002) p. 685.Google Scholar
31. Scherrer, P., Dimitropoulos, C., Borsa, F., and Rubini, S., Phys. Rev. B 57, 110462 (1998).Google Scholar
32. Bastow, T.J., Smith, M.E. and West, G.W., J. Phys.: Condensed Matter 9, 6085 (1997).Google Scholar
33. Seymour, E.F.W., Proc. Phys. Soc. 10, 269 (1957).Google Scholar
34. Kouvel, J.S., chapter in Magnetism and Metallurgy, ed. Berkowitz, A.E., Kneller, Y. E. (Academic Press, 1969).Google Scholar
35. Cadeville, M.C. and Morán-López, J.L., Phys. Rep. 153, 331 (1987).Google Scholar
36. Ohnuma, I., Enoki, H., Ikeda, O., Kainuma, R., Ohtani, H., Sundman, B., and Ishida, K., Acta Mater. 50, 379 (2002).Google Scholar
37. van Deen, J.K. and van der Woude, F., Acta Metall. 29, 1255 (1981).Google Scholar
38. Spataru, T., Manfrinetti, P., Palenzona, A., Blaha, P., Fornasini, M.L. and Principi, G., Intermetallics 10, 423 (2002).Google Scholar