Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T18:57:44.708Z Has data issue: false hasContentIssue false

The Source of Transient Enhanced Diffusion in Sub-keV Implanted Boron in Crystalline Silicon

Published online by Cambridge University Press:  17 March 2011

E. Napolitani
Affiliation:
INFM and Dept. of Physics, Padova, ITALY
A. Carnera
Affiliation:
INFM and Dept. of Physics, Padova, ITALY
V. Privitera
Affiliation:
CNR-IMETEM, Catania, ITALY
E. Schroer
Affiliation:
CNR-IMETEM, Catania, ITALY
G. Mannino
Affiliation:
CNR-IMETEM, Catania, ITALY
F. Priolo
Affiliation:
INFM and Dept. of Physics, Catania, ITALY
S. Moffatt
Affiliation:
Applied Materials, 2727 Augustine Drive, Santa Clara California 95054, USA
Get access

Abstract

The transient enhanced diffusion (TED) during activation annealing of ultra low energy implanted boron (0.5 keV & 1 keV, 1×1013/cm2 & 1×1014/cm2) in silicon is investigated in detail. Annealing in the temperature range from 450°C to 750°C is either performed directly after implantation or after the removal of a surface layer before annealing. The kinetics revealed two regimes of enhanced diffusion ruled by different decay constants and different activation energies. The dependence of these two processes on implantation energy and annealing temperature is described and explained from the microscopical point of view. The annealings performed after surface layer removal, revealed that the defects responsible for the faster diffusion are located deeper than the defects responsible for the slower process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. International Technology Roadmap for Semiconductors (Semiconductor Industry Association, 1999).Google Scholar
2. Napolitani, E., Carnera, A., Schroer, E., Privitera, V., Priolo, F., Moffatt, S., Appl. Phys. Lett. 75, 1869 (1999).10.1063/1.124855Google Scholar
3. Napolitani, E., Carnera, A., Storti, R., Privitera, V., Priolo, F., Mannino, G., Moffatt, S., J. Vac. Sci. & Technol. B 18, 519 (2000).10.1116/1.591224Google Scholar
4. Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S. and Haynes, T.E., J. Appl. Phys. 81, 6031 (1997).10.1063/1.364452Google Scholar
5. Liu, J., Krishnamoorthy, V., Gossman, H.-J., Rubin, L., Law, M. E., and Jones, K. S., J. Appl. Phys. 81, 1656 (1997).10.1063/1.364022Google Scholar
6. Huang, M. B. and Mitchell, I.V., J. Appl. Phys 85, 174 (1999).10.1063/1.369466Google Scholar
7. Pelaz, L., Gilmer, G. H., Gossman, H.-J., Rafferty, C. S., Jaraiz, M., Barbolla, J., Appl. Phys. Lett. 74, 3657 (1999).10.1063/1.123213Google Scholar
8. Ziegler, J. F., Biersack, J. P., Littmark, U., Stopping and Ranges of Ions in Matter. New York: Pergamon, 1985.10.1007/978-1-4615-8103-1_3Google Scholar