Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T09:00:05.377Z Has data issue: false hasContentIssue false

Spectral Transformation of Exelfs Data and a Structural Examination of Nitrogen on Cu(100) and Cu(110) Surfaces

Published online by Cambridge University Press:  22 February 2011

Q. Dai
Affiliation:
Dept. of Chemistry, U. of Illinois, Urbana, IL 61801
A. J. Gellman
Affiliation:
Dept. of Chemistry, U. of Illinois, Urbana, IL 61801
Get access

Abstract

EXtended Electron Energy Loss Fine Structure (EXELFS) spectra have been obtained above the K-edge of nitrogen atoms adsorbed on Cu. The radial distribution functions obtained from the fine structure indicate N-Cu bond lengths of 1.84(±.03) Å and 1.81(±.03) Å for nitrogen on the Cu(100) and Cu(110) surfaces respectively. As in previous EXELFS measurements, the actual measurements made are of N"(E) rather than direct measurement of N(E), the electron energy loss distribution. The EXELFS spectra from these two surfaces are used to illustrate the influence of this collection scheme on the radial distribution function obtained by Fourier transformation of the raw data. To obtain the direct analog of the radial distribution function found from the EXAFS experiment one must either resort to spectral integration or appropriate scaling of the distribution function found in the EXELFS experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saldin, D. K., Yao, J. M., Phys. Rev. B 41(1) (1990) 52 CrossRefGoogle Scholar
2. Caputi, L. S., Chiarello, G., Amoddeo, A., Sur. Sci., 188 (1987) 63 Google Scholar
3. Papagno, L., Caputi, L. S., Phys. Rev. B 29(3) (1984) 1483 Google Scholar
4. Hitchock, A. P., Teng, C. H., Sur. Sci. 149 (1985) 558 Google Scholar
5. Burkstrand, J. M., Kleiman, G. G., Tibets, G. G., Tracy, J. C., J. Vacuum. Sci. Technol. 13 (1976) 291 Google Scholar
6. Zeng, H. C., Sodhi, R. N. S., Mitchell, K. A. R., Sur. Sci. 188 (1987) 599 CrossRefGoogle Scholar
7. Wycoff, R. W. G., Crystal Structures, Vol.2, p.122, Wiley, NY (1963)Google Scholar
8. Heskett, D., Baddorf, A., Plummer, E. W., Sur. Sci. 195 (1988) 94 Google Scholar
9. Teo, B. K., Lee, P. A., J. Am. Chem. Soc. 101(11) (1979) 2815 CrossRefGoogle Scholar
10. Dai, Q., Gellman, A. J., Sur. Sci. 235 (1990) 217 Google Scholar