Hostname: page-component-cb9f654ff-w5vf4 Total loading time: 0 Render date: 2025-08-02T20:52:36.641Z Has data issue: false hasContentIssue false

Spontaneous Crystalline Multilayer Formation in Ni Implanted Alat 100 K

Published online by Cambridge University Press:  17 March 2011

Alexandre Cuenat
Affiliation:
Institut de Génie atomique, Département de Physique, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
Aicha Hessler-Wyser
Affiliation:
Institut de Génie atomique, Département de Physique, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
Max Döbeli
Affiliation:
Ion Beam Physics, Paul Scherrer Institut, c/o IPP HPK H32, ETH Hoenggerberg, 8093 Zuerich, Switzerland
Rolf Gotthardt
Affiliation:
Institut de Génie atomique, Département de Physique, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
Get access

Abstract

The microstructure evolution of aluminum implanted with nickel at 5 MeV andat 100 K to a local concentration of 25 at. % is described. TransmissionElectron Microscopy (TEM) observa- tions and Rutherford BackscatteringSpectrometry (RBS) experiments are conducted to deter-mine the Ni profileand the microstructure of the implanted samples. For lower Ni concentration,it has been previously observed that Al0.75Ni0.25amorphous precipitates are formed together with a high dislocation density.When the Ni concentration reaches 25 at. %, a new crystalline multi-layeredmicrostructure is observed: the TEM observations reveal the presence ofwell-defined crystalline layers separated by sharp interfaces. To ourknowledge, it is the first time that such a structure is observed withoutfurther annealing of the implanted sample. A series of mechanisms describingthe formation of the crystalline multilayer are briefly discussed. It isargued that its formation is the result of a recrystallization frontproduced by the exothermal amorphous to crystal transformation.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Picraux, S.T., Follstaedt, D.M., Baeri, P., Campisano, S.U., Foti, G., Rimini, E., Rad. Eff. Def. 49, 75 (1980).Google Scholar
2. Thomé, L., Pons, F., Pivin, J.C., Cohen, C., Nucl. Instrum. Meth. B 15, 269 (1986).Google Scholar
3. Schäublin, R. and Gotthardt, R., Phil. Mag. A, 74, 593 (1996).Google Scholar
4. Hessler, A., PhD. Thesis EPFL, N°1966 (1999).Google Scholar
5. Cuenat, A., PhD. Thesis EPFL, N°2168 (2000).Google Scholar
6. Follstaedt, D., in Processing of Metals and Alloys, edited by Cahn, J.W. (Wyley/VCH, Weinheim, 1991).Google Scholar
7. Nastasi, M., Williams, J.M., Kenik, E.A., Mayer, J.W., Nucl. Instrum. Meth. B 19, 543 (1987).Google Scholar
8. Ahmed, M. and Potter, D., Acta Met. 33, 2221 (1985).Google Scholar
9. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
10. Hessler-Wyser, A., Cuenat, A., Döbeli, M. and Gotthardt, R., in preparation.Google Scholar
11. Cuenat, A., Schäublin, R., Hessler-Wyser, A. and Gotthardt, R., Ultramicroscopy 83, 179 (2000).Google Scholar
12. Desre, P. and Yavari, A., Phys. Rev. Lett. 64, 1533 (1990).Google Scholar