Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-12T21:41:56.788Z Has data issue: false hasContentIssue false

Stability and Performance Issues for Nonlinear Optical Chromophores, Polymers and Devices

Published online by Cambridge University Press:  21 February 2011

R. J. Twieg
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120
D. M. Burland
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120
M. Jurich
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120
V. Y. Lee
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120
R. D. Miller
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120
C. R. Moylan
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120
R. Siemens
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120
A. Skumanich
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120
J. I. Thackara
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120
T. Verbeist
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120
W. Volksen
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120
A. Knoesen
Affiliation:
Department of Electrical and Computer Engineering, University of California, Davis, California 95616
R. A. Hill
Affiliation:
Department of Electrical and Computer Engineering, University of California, Davis, California 95616
D. Yankelevich
Affiliation:
Department of Electrical and Computer Engineering, University of California, Davis, California 95616
Get access

Abstract

In the course of development of any new technology the issues of device stability and reliability are inevitably encountered and must be summarily dealt with. The development of organic and polymeric nonlinear optical media has been no exception and has now evolved to a stage wherein solutions to a few performance issues are of crucial importance. Discussions here focus on just two of these critical problems. First, we describe a preliminary study intended to identify some of the variables involved in optical damage. The goal here is to identify suitable photochemically stable chromophores and polymers and to elucidate any processing and environmental influences which contribute to damage. Second, the thermal stability of nonlinear optical chromophores has already attracted much attention and significant progress has been made in enhancing the thermal stability of many systems. Our most recent effort has concentrated on chromophores with a variety of different configurations and combinations of nitrile acceptor groups, some of which possess both large nonlinearities and excellent thermal stability. Some newer aspects of a thermal stability screening protocol which are particularly useful for these thermally stable chromophores and polymers are also described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prasad, P. N., Williams, D. J., Introduction to Nonlinear Optical Effects in Molecules and Polymers, (Wiley, New York, 1991).Google Scholar
2. Boyd, G. T., in Polym. Electron. Photonic Appl., Wong, C. P., Ed., 467, (Academic Press, Boston, 1993).Google Scholar
3. Zyss, J., Ed., Molecular Nonlinear Optics Materials, Physics and Devices, (Academic Press, Boston, 1994).Google Scholar
4. Burland, D., Miller, R., Walsh, C., Chem. Rev., 94, 31 (1994).Google Scholar
5. Mortazavi, M. A., Yoon, H. N., Teng, C. C., J. Appl. Phys., 74, 4871 (1993)Google Scholar
6. Mortazavi, M., Song, K., Yoon, H., McCulloch, I., Amer. Chem. Soc. Polym. Prepr., 35(2), 198 (1994)Google Scholar
7. Baigent, D. R., Greenham, N. C., Gruner, J., Marks, R., Friend, R. H., Moratti, S. C., Holmes, A. B., Syn. Metals, 67, 3 (1994).10.1016/0379-6779(94)90004-3Google Scholar
8. Ogilby, P. R., personal communication.Google Scholar
9. Yankelevich, D. R., Dienes, A., Knoesen, A., Schoenlein, R. W., Shank, C. V., IEEE J. Quantum Elec., 28, 2398, (1992).Google Scholar
10. Dienes, A., Sidick, E., Hill, R. A., Knoesen, A., Chapter 35 in “Second-Order Nonlinear Optical Polymers”, G. A. Lindsay, K. D. Singer, Eds., American Chemical Society, in press.Google Scholar
11. Skumanich, A., Jurich, M., Swalen, J. D., Appl. Phys. Lett., 62, 446 (1993).Google Scholar
12. Cahill, P. A., Seger, C. H., Meinhardt, M. B., Beuhler, A. J., Wargowski, D. A., Singer, K. D., Kowalczyk, T. C., Kosc, T. Z., Proc. SPIE, 2025, 48 (1993).10.1117/12.165295Google Scholar
13. Marder, S. R., Cheng, L.-T., Tiemann, B. G., Friedli, A. C., Blanchard-Desce, M., Perry, J. W., Skindhoj, J., Science, 263, 511 (1994).Google Scholar
14. Jen, A. K.-Y., Rao, V., Drost, K. J., Wong, K. Y., Cava, M. P., J. Chem. Soc. Chem. Commun., 2057 (1994).Google Scholar
15. Twieg, R. J., Betterton, K. M., Burland, D. M., Lee, V. Y., Miller, R. D., Moylan, C. R., Volksen, W., Walsh, C. A., Proc. SPIE, 2025, 94 (1993).10.1117/12.165246Google Scholar
16. Twieg, R. J., Burland, D. M., Hedrick, J. L., Lee, V. Y., Miller, R. D., Moylan, C. R., Volksen, W., Walsh, C. A., Mat. Res. Soc. Symp. Proc., 328, 421 (1994).Google Scholar
17. Moylan, C. R., Twieg, R. J., Lee, V. Y., Swanson, S. A., Betterton, K. M., Miller, R. D., J. Amer. Chem. Soc., 115, 12599 (1993).Google Scholar
18. Stamatoff, J. B., Buckley, A., Calundann, G., Choe, E. W., DeMartino, R., Khanarian, G., Leslie, T., Nelson, G., Stuetz, D., Teng, C. C., Yoon, H. N., Proc. SPIE, 682, 85 (1986).Google Scholar
19. Katz, H. E., Singer, K. D., Sohn, J. E., Dirk, C. W., King, L. A., Gordon, H. M., J. Amer. Chem. Soc., 109, 6561 (1987).Google Scholar
20. Lindsay, G. A., et. al., unpublished results.Google Scholar
21. Miller, R. D., Burland, D. M., Jurich, M., Lee, V. Y., Moylan, C. R., Twieg, R. J., Thackara, J., Verbeist, T., Volksen, W., Walsh, C. A., Chapter 20 in “Second-Order Nonlinear Optical Polymers”, G. A. Lindsay, K. D. Singer, Eds., American Chemical Society, in press.Google Scholar
22. Ermer, S., Valley, J. F., Lytel, R., Lipscomb, G. F., Eck, T. E. Van, Girton, D. G., Appl. Phys. Lett., 61, 2272 (1992).Google Scholar
23. Ermer, S., Leung, D., Lovejoy, S., Valley, J., Stiller, M., Organic Thin Films for Photonic Applications Technical Digest, 17, 50 (1992).Google Scholar
24. Jen, A. K.-Y., Rao, V. P., Wong, K. Y., Drost, K. J., J. Chem. Soc. Chem. Commun., 90 (1992).Google Scholar
25. “Cyclopolymerization and Polymers with Chain-Ring Structures”, Butler, G., Kresta, J. E., Ed., ACS Symp. Ser. 195, American Chemical Society 1982. See especially chapters 23, 25 and 26.Google Scholar
26. Moylan, C. R., Miller, R. D., Twieg, R. J., Lee, V. Y., manuscript submitted.Google Scholar
27. Rao, V. P., Jen, A. K.-Y., Wong, K. Y., Drost, K. J., J. Chem. Soc. Chem. Commun., 1118 (1993).Google Scholar