Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-30T06:03:48.138Z Has data issue: false hasContentIssue false

STABILITY OF SI-DOPED AlGaAs/GaAs MODFET STRUCTURES DURING CONVENTIONAL FURNACE AND RAPID OPTICAL ANNEALING.

Published online by Cambridge University Press:  28 February 2011

J. K. ABROKWAH
Affiliation:
Honeywell Physical Sciences Center, 10701 Lyndale Avenue South, Bloomington, MN 55420
H. HIBBS
Affiliation:
Honeywell Physical Sciences Center, 10701 Lyndale Avenue South, Bloomington, MN 55420
R. R. DANIELS
Affiliation:
Honeywell Physical Sciences Center, 10701 Lyndale Avenue South, Bloomington, MN 55420
P. JOSLYN
Affiliation:
Honeywell Physical Sciences Center, 10701 Lyndale Avenue South, Bloomington, MN 55420
Get access

Abstract

The use of an AlGaAs/n-GaAs superlattice in place of the n-AlGaAs layer in MODFET devices reduces the light and temperature sensitivity of the threshold voltage. This paper considers the stability of Si doped superlattices under annealing conditions required for activation of the implant in the self-aligned gate MODFET fabrication process. Rapid optical annealing does not significantly degrade the superlattice structure. The DX center concentration in the superlattice structures is a factor of 30 less than measured in conventional MODFET structures. High performance MOOFET devices have been fabricated using the self-aligned gate process with rapid optical annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lang, D.V., Logan, R.A., and Jaros, M., Phys. Rev. B19, 1015 (1979).Google Scholar
2. Subramanian, S., Schuller, U., J.R. Arthur Jr., and Shannon, L.C., J. of Vac. Sci. Technol. 3 650 (1985).Google Scholar
3. Valois, A.J. and Robinson, G.Y., J. of Vac. Sci. and Technol. 3 649 (1985).Google Scholar
4. Baba, T., Mizutani, T., Ogawa, M., Ohata, K., Jap. J. of Appl. Phys. 23 L654 (1984).Google Scholar
5. Abrokwah, J.K., N.C. Cirillo Jr., Arch, D., Daniels, R.R., Hibbs-Brenner, M., Fraasch, A., Vold, P. and Joslyn, P., to be published in Proc. of the Sixth MBE Workshop, August 1985, Minneapolis. Proceedings published in J. Vac. Sci. Technol.Google Scholar
6. Meehan, K., N. Holonyak,Jr., Brown, J.M., Nixon, M.A., Gavrilovic, P., Burnham, R.D., Appl. Phys. Lett. 47 130 (1985).Google Scholar
7. Abrokwah, J.K., N.C. Cirillo,Jr., Helix, M.J., and Longerbone, M., J. Vac. Sci. Technol. B2 252 (1984).Google Scholar
8. Petroff, P.M., Miller, R.C., Gossard, A.C., Wiegman, W., Appl. Phys. Lett. 44 217 (1984).Google Scholar
9. Cirillo, N.C., Jr., Abrokwah, J.K. and Jamison, S.A., Proc of the IEEE GaAs Integrated Circuit Symposium, 167 (Oct. 1984).Google Scholar
10. Petroff, P.M., J. Vac. Sci. Technol. 14 973 (1977).Google Scholar
11. Arch, D.A., private communication.Google Scholar