Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T22:28:25.434Z Has data issue: false hasContentIssue false

The Stability to Ageing of Pd/Zn and Pt-Based Ohmic Contacts to p-InGaAs/InP

Published online by Cambridge University Press:  10 February 2011

P. W. Leech
Affiliation:
CSIRO Div. Manufacturing Science and Technology, Victoria, Australia, leech@mst.csiro.au
G. K. Reeves
Affiliation:
Dept. of Communication and Electronic Engineering, R.M.I.T., Victoria, Australia
P. Ressel
Affiliation:
Ferdinand-Braun-Institut f¨i Höchstfrequenztechnik, D-12489 Berlin, Germany
Get access

Abstract

Pd/Zn/Au contacts to p-In0.53Ga0.47As/InP with various barrier layers (Pd, Pt or LaB,) to the indiffusion of Au have been examined by Rutherford Backscattering Spectrometry (RBS). For the metallisations with a barrier layer of Pd, the ageing of the contacts at 400°C for 20 h produced a widespread indiffusion of Au. In comparison, the incorporation of a layer of Pt or amorphous LaB6 prevented an indiffusion of Au and significantly reduced any outdiffusion of the semiconductor elements. The presence of the barrier layer of Pt or LaB6 produced little or no detrimental increase in specific contact resistance, ρc, for this contact system. Values of ρc in the range 8–10 × 10−6 Ω cm2 were obtained for all of the contacts based on Pd/Zn/Au after annealing at 500°C. A comparison has been made with the characteristics of Pt/Ti/Pt/Au contacts to p-In0.53Ga0.47As/ InP which were shown as stable against the indiffusion of Au.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wasserbauer, J.G. Bowers, J.E., Hafich, M.J., Silvestre, P., Woods, L.M. and Robinson, G.Y., Electronics Letters, 28 (17), 1568, (1992).Google Scholar
2. Leech, P.W. and Reeves, G.K. in Interface Control of Electrical, Chemical and Mechanical Properties, edited by Murarka, S.P., Rose, K., Ohmi, T. and Seidel, T., (Mater.Res.Soc.Proc., 318, Boston, MA, 1993), pp. 183188.Google Scholar
3. Leech, P.W., Reeves, G.K. and Kibel, M.H., J.Appl. Phys., 76(8), 4713, (1994).Google Scholar
4. Ressel, P., Strusny, H., Trapp, M., Krautle, H. and Fritzsche, D., Appl. Phys.Lett., 65, 1174, (1994).10.1063/1.112137Google Scholar
5. Ressel, P., Strusny, H., Fritzsche, D., Krautle, H. and Mause, K. in Interface Control of Electrical, Chemical and Mechanical Properties edited by Murarka, S.P., Rose, K., Ohmi, T. and Seidel, T., (Mater.Res.Soc. Proc., 318, Boston, MA, 1993), pp.177182.Google Scholar
6. Chang, C.C. and Quintana, G., Appl.Phys.Letts., 29, 453, (1976).Google Scholar
7. Katz, A., Weir, B.E. and Dautremont-Smith, W.C., J.Appl.Phys., 68(3), 1123, (1990).Google Scholar
8. Wurfl, J., Fricke, K. and Hartnagel, H. -L., IOP Conference Series 112, 239, (1991).Google Scholar
9. Herniman, J., Yu, J.S. and Staton-Bevan, A.E., Applied Surface Science, 52, 289, (1991).Google Scholar
10. Nebauer, E., Phys.Stat. Sol.(b), 194, 121, (1996).Google Scholar
11. Okada, H., Shikato, S., Hayashi, H, Jap.J.Appl.Phys., 30(4A), L558, (1991).Google Scholar
12. Reeves, G.K. and Harrison, H.B., IEEE Electron.Dev.Lett., EDL–3, 111, (1982).Google Scholar
13. Vandenberg, J., Temkin, H., Harem, R.A. and DiGuiseppe, M.A., Thin Solid Films, 104, 419, (1983).10.1016/0040-6090(83)90585-0Google Scholar
14. Chen, C.L., Hollis, M.A., Mahoney, L.J., Goodhue, W.D., Manfra, M.J., and Murphy, R.A., J.Vac.Sci.Technol., B5, 902, (1987).Google Scholar
15. Malacky, L., Kordos, P. and Novak, J., Solid State Electronics, 33, 273, (1990).10.1016/0038-1101(90)90166-CGoogle Scholar
16. Fontaine, C., Okumura, T. and Tu, K.N., J.Appl.Phys., 54(3) 1404, (1983).Google Scholar
17. Lau, S.S., and Sun, R.C., Thin Solid Films, 10, 273, (1972).Google Scholar