Skip to main content
×
×
Home

STM Studies of Electrode/Electrolyte Interfaces and Silicon Surface Reactions in Controlled Atmospheres

  • Christopher P. Wade (a1), Huihong Luo (a1), William L. Dunbar (a1), Matthew R. Linford (a1) and Christopher E.D. Chidsey (a1)...
Abstract

We have assembled a scanning tunneling microscope with an inverted sample that allows the sample surface to be contacted by fluid electrolytes in a controlled atmosphere. A hanging meniscus is formed between the sample and a small cup surrounding the tunneling tip. In-situ imaging of the electrode/electrolyte interface is conveniently achieved with clean samples under potentiostatic control. The functioning of the microscope is illustrated by the imaging of the electrodeposition of copper on gold. This microscope has been used to image hydrogen-terminated silicon surfaces and to demonstrate that islands, tentatively assigned as silicon oxide, are formed on rinsing in water but can be avoided if the surface is not rinsed on withdrawal from the ammonium fluoride etching solution. Finally, STM shows that the convenient, gas-phase photochlorination of H-Si(111) produces the simple Cl-Si(111)(1×1) structure with little or no etching of the silicon surface.

Copyright
References
Hide All
1. Magnussen, O.M., Hotlos, J., Nichols, R.J., Kolb, D.M. and Behm, R.J., Phys. Rev. Lett. 64, p. 2929 (1990).
2. Chidsey, C. E. D. and Linford, M. R. in Cleaning Technology in Semiconductor Device Manufacturing IV, edited by Novak, R.E. and Ruzyllo, J. (Electrochemical Soc. Proc. 95–20, Pennington, NJ 1996), p. 455463.
3. Linford, M. R., Fenter, P., Eisenberger, P. M. and Chidsey, C. E. D., J. Am. Chem. Soc. 117, p. 3145(1995).
4. Higashi, G.S., Chabal, Y.J., Trucks, G.W. and Raghavachari, K., Appl. Phys. Lett. 56, p. 2104 (1990).
5. Linford, M.R., Ph.D. Dissertation, Stanford University, 1996.
6. Will, T., Dietterle, M. and Kolb, D.M. in Nanoscale Probes of the Solid-Liquid Interface, (NATO ASI Series E 288 1995) p. 137162.
7. Hachiya, T., Honbo, H. and Itaya, K., J. Electroanal. Chem. 315, p. 275 (1991).
8. Toney, M.F., Howard, J.N., Richer, J., Borges, G.L., Gordon, J.G., Melroy, O.R., Yee, D. and Sorensen, L.B., Phys. Rev. Lett. 75, p. 4472 (1995).
9. Neuwald, U., Hessel, H.E., Feltz, A., Memmert, U. and Behm, R.J., Appl. Phys. Lett. 60, p. 1307 (1992).
10. Allongue, P., Fueling, V. and Gerischer, H., Electrochimica Acta 40, p. 1353 (1995).
11. Bansal, .A., Li, X., Lauermann, I., Lewis, N.S., Yi, S.I. and Weinberg, W.H., J. Am. Chem. Soc. 118, 7225 (1996).
12. Terry, J., Linford, M.R., Wigren, C., Cao, R., Pianetta, P. and Chidsey, C.E.D., submitted to Appl. Phys. Lett.
13. Lawing, A.S., Muscat, A.J., Sawin, H.H., Butterbaugh, J. W., in Cleaning Technology in Semiconductor Device Manufacturing IV, edited by Novak, R.E. and Ruzyllo, J. (Electrochemical Soc. Proc. 95–20, Pennington, NJ 1996), p. 150.
14. Terry, J., Linford, M. R., Chidsey, C.E.D., Cao, R., Pianetta, P., unpublished results.
15. Boland, J.J. and Villarrubia, J.S., Phys. Rev. B. 41, p. 9865 (1990).
16. Feltz, A., Memmert, U. and Behm, R.J., Surf. Sci. 307–309, p. 216 (1994).
17. Magnussen, O. M., Ph.D. Dissertation, Universität Ulm, 1993; also private communication.
18. Ikegami, H., Ohmori, K., Ikeyda, H., Iwano, H., Zaima, S. and Yasuda, Y., Jpn. J. Appl. Phys. Part 135, p. 1593 (1996).
19. Ogawa, H., Ishikawa, K., Inomata, C. and Fujimura, S., J. Appl Phys 79, p.472 (1996).
20. Graf, D., Grunder, M. and Schultz, R., J. Vac. Sci. Technol. A 7, p. 808 (1988).
21. Yasaka, T., Kanda, K., Sawara, K., Miyazaki, S. and Hirose, M., Jap. J. Appl. Phys. Part I 30, p. 3567(1991).
22. Yano, F., Hiraoka, A., Itoga, T., Kokima, H. and Kanehori, K., J. Vac. Sci. Technol. A 13, p. 2671 (1995).
23. Watanabe, S. and Sugita, Y., Surf. Sci. 327, p, l (1995).
24. Usuda, K., Kanaya, H., Yamada, K., Sato, T., Sueyoshi, T. and Iwatsuki, M., Appl. Phys. Lett. 64, p. 3240(1994).
25. Morita, M., Ohmi, T., Hasegawa, E., Kawakimi, M. and Suma, K., Appl. Phys. Lett. 55, p. 562 (1989).
26. CRC Handbook of Chemistry and Physics, 73rd. ed., edited by Lide, D. R. (CRC Press, Inc., Boca Raton, Florida, 1992) p. 12–8.
27. Kelly, A. and Groves, G. W., Crystallography and Crystal Defects (Addison-Wesley Publishing Company, Inc., Herndon, VA, 1970), p. 411.
28. Moringa, H. and Ohmi, T. in Cleaning Technology in Semiconductor Device Manufacturing IV, edited by Novak, R.E. and Ruzyllo, J. (Electrochemical Soc. Proc. 95–20, Pennington, NJ 1996), p. 257268.
29. Chyan, O.M.R., Chen, J.-J., Chien, H. Y., Sees, J. and Hall, L., J. Electrochem. Soc. 143, p. 92 (1996).
30. The oxygen coverage γ02 determined from the XPS spectra was calculated by assuming that the coverage of chlorine on the Cl-Si(111) surface is 1 monolayer (Figure 5). That surface shows a Cl2s/Si2P peak area ratio of 0.25. We calculate the oxygen coverage on the rinsed and unrinsed H-Si(111) surfaces using the following equation:
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed