Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T15:59:09.047Z Has data issue: false hasContentIssue false

Structural Analysis of a Completely Amorphous 238Pu-Doped Zircon by Neutron Diffraction

Published online by Cambridge University Press:  15 February 2011

Jeffrey A. Fortner
Affiliation:
Argonne National Laboratory, Argonne, IL 60439, fortner@cmt.anl.gov
Yaspal Badyal
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
David C. L. Price
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
John M. Hanchar
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
William J. Weber
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352
Get access

Abstract

The structure of a completely amorphous zircon was determined by time-of-flight neutron diffraction at Argonne's Intense Pulsed Neutron Source (IPNS). The sample of metamict zircon (ZrSiO4), initially doped to 8.85 weight percent 238pu, had been completely amorphized by alpha-recoil damage since its synthesis in 1981 at the Pacific Northwest National Laboratory (PNNL). The measured diffraction structure factor, S(Q), indicated a completely amorphous sample, with no signs of residual zircon microcrystallinity. The pair distribution function obtained indicated that the structure was that of an oxide glass, retaining the Si–O, Zr–O, and O–O bond lengths of crystalline zircon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bowring, S. A., Williams, I. S., and Compston, W., Geology (Boulder) 17 (11), 971975 (1989).Google Scholar
2. Burakov, B. E., Anderson, E. B., Rovsha, V. S., Ushakov, S. V., Ewing, R. C., Lutze, W., and Weber, W. J., Mater. Res. Soc. Symp. Proc. 412, 3340 (1996).Google Scholar
3. Weber, W. J., Ewing, R. C., and Lutze, W., Mater. Res. Soc. Symp. Proc. 412, 2532 (1996).Google Scholar
4. Weber, W. J., Ewing, R. C., and Meldrum, A., J. Nucl. Mater. 250, 147155 (1997).Google Scholar
5. Weber, W. J., J. Mater. Res. 5 (11), 26872697 (1990); W. J. Weber, R. C. Ewing, and L.-M. Wang, J. Mater. Res. 9 (3) 668-698 (1994).Google Scholar
6. Farges, F., Phys. Chem. Minerals 20 504 (1994).Google Scholar
7. McLaren, A. C., Gerald, J. D. Fitz, and Williams, I. S., Geochim. Cosmochim. Acta 58 (2), 9931005 (1994).Google Scholar
8. Ellsworth, S., Navrotsky, A., and Ewing, R. S., Physics and Chemistry of Minerals 21 (3), 146149 (1994).Google Scholar
9. A pyrochlore/zirconolite composite ceramic is the currently favored material for this purpose; DOE, Record of Decision for the Storage and Disposition of Weapons-Useable Fissile Materials Final Programmatic Environmental Impact Statement 62 FR3014, Office of the Federal Register, Washington D. C., January 14, 1997.Google Scholar
10. Speer, J. A., “Zircon,” Orthosiliscates: Reviews in Minerology, Volume 5. Ribbe, P. H., ed., pp. 67112. Mineralogical Society of America, Washington D. C. (1980).Google Scholar
11. Ellison, A. J. G. et al. , J. Neutron Research 1 (4), 6170 (1993); D. J. Mikkelson, A. J. G. Ellison, D. L. Price, T. G. Worlton, NucI. Instrum. Methods, 354 112-120 (1995).Google Scholar
12. Smith, D. K. and Newkirk, H. W., Acta Cryst. 18 983991 (1965).Google Scholar
13. Hess, N. J., Weber, W. J., and Conradson, S. D., J. Nucl. Mater. 254 (2,3) 175184 (1998).Google Scholar
14. Hess, N. J., Weber, W. J., and Conradson, S. D., J. Alloys and Compounds, 271–273, 240243 (1998).Google Scholar