Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-17T03:44:50.126Z Has data issue: false hasContentIssue false

Structural and Electrical Characterization of U Ltra-Thin SiO2 Grown on Hydrogen-Terminated Silicon Surfaces

Published online by Cambridge University Press:  21 February 2011

M. Hirose
Affiliation:
Department of Electrical Engineering, Hiroshima University, Higashi-Hiroshima 724, Japan
T. Yasaka
Affiliation:
Department of Electrical Engineering, Hiroshima University, Higashi-Hiroshima 724, Japan
M. Hiroshima
Affiliation:
Department of Electrical Engineering, Hiroshima University, Higashi-Hiroshima 724, Japan
M. Takakura
Affiliation:
Department of Electrical Engineering, Hiroshima University, Higashi-Hiroshima 724, Japan
S. Miyazaki
Affiliation:
Department of Electrical Engineering, Hiroshima University, Higashi-Hiroshima 724, Japan
Get access

Abstract

The surface microroughness of Si(100) wafers has been studied by FT-IR-ATR. The final wafer clean in an 0.1% HF + 1% H2O2 aqueous solution significantly improves the hydrogenterminated surface morphology as demonstrated by a sharp SiH2 stretching vibration peak accompanied with the weak SiH and SiH3 peaks. The ultra-thin gate oxide grown on such surface exhibits nearly ideal tunneling current transport. The cleaning in 4.5% HF reduces the SiH2 peak height and enhances SiH3, making the surface rough. Nevertheless, the tunneling characteristics are hardly influenced with such spectral change.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Morita, M., Ohmi, T, Hasegawa, E., Kawakami, M. and Suma, K., Appl. Phys. Lett. 55 562(1989).Google Scholar
[2] Yasaka, T., Takakura, M., Miyazaki, S. and Hirose, M., Mat. Res. Soc. Symp. Proc. 222 225 (1991).Google Scholar
[3] Homma, Y, Suzuki, M. and Yabumoto, N., J. Vac. Sci. Technol. 10 2055 (1992).Google Scholar
[4] Takahagi, T., Nagai, I., Ishitani, A., Kuroda, H. and Nagasawa, Y, J. Appl. Phys. 64 3516 (1988).Google Scholar
[5] Burrows, V. A., Chabal, Y. J., Higashi, G. S., Raghavachari, K. and Christman, S. B. Appl. Phys. Lett. 53 998 (1988).Google Scholar
[6] Higashi, G. S., Chabal, Y. J., Trucks, G. W. and Raghavachari, K., Appl. Phys. Lett. 56 656 (1990).Google Scholar
[7] Makihara, K., Teramoto, A., Nakamura, K., Morita, M. and Ohmi, T: Extended Abstracts of 1992 Intern. Conf. on Solid State Devices and Materials (1992, Tsukuba) p. 120.Google Scholar
[8] Yasaka, T., Kanda, K., Sawara, K., Miyazaki, S. and Hirose, M., Jpn. J. Appl. Phys. 30 3567 (1991).Google Scholar
[9] Watanabe, S., Shigeno, M., Nakayama, N. and Ito, T., Jpn. J. Appl. Phys. 30 3567 (1991).Google Scholar
[10] Sawara, K., Yasaka, T., Miyazaki, S. and Hirose, M., Jpn. J. Appl. Phys. 31 931 (1992).Google Scholar
[11] Ohmi, T., Miyashita, M., Itano, M., Imaoka, T. and Kawanabe, I., IEEE Trans. Electron Devices 39 537 (1992).CrossRefGoogle Scholar
[12] Lucovsky, G., Fitch, J. T, Kobeda, E. and Irene, E. A., Proc. of the Symp. at the 173rd Meeting of the Electrochem. Soc. (Atlanta, 1988) p. 139.Google Scholar