Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T06:40:06.131Z Has data issue: false hasContentIssue false

Structural Defects in Ion Implanted 4H-SiC Epilayers

Published online by Cambridge University Press:  21 March 2011

P. O. Å. Persson
Affiliation:
Thin Film Physics Division, Department of Physics, Linköping University, S-581 83 Linköping, Sweden
W. Skorupa
Affiliation:
FWIM Forschungszentrum Rossendorf, D-01474 Schoenfeld-Weissig, Germany
D. Panknin
Affiliation:
FWIM Forschungszentrum Rossendorf, D-01474 Schoenfeld-Weissig, Germany
A. Kuznetsov
Affiliation:
Royal Institute of Technology, Solid State Electronics, P.O. Box E229, S-164 40 Kista-Stockholm, Sweden
A. Hallén
Affiliation:
FWIM Forschungszentrum Rossendorf, D-01474 Schoenfeld-Weissig, Germany
L. Hultman
Affiliation:
Thin Film Physics Division, Department of Physics, Linköping University, S-581 83 Linköping, Sweden
Get access

Abstract

Transmission electron microscopy (TEM) was used to investigate Al, Ar, C and Si ionimplanted 4H-SiC epilayers. After the implantation the samples were thermally annealed for 30 minutes at 1700°C. During the annealing process dislocation loops are formed and the generation of such dislocation loops upon annealing, is investigated with respect to dopant electrical activation, peak ion concentration and calculated interstitial/vacancy concentrations. It is concluded that the dislocation loops are generated as the result of a combination of residual damage and excess interstitials generated in a “plus one” (+1) process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wendler, E., Heft, A. and Wesch, W., Nucl. Instrum. and Methods B 141 (1998), p 105.Google Scholar
2. Rao, M.V., Griffiths, P., Holland, O.W., Kelner, G., Freitas, J.A., Simons, D.S., Chi, P.H. and Ghezzo, M., J. Appl. Phys. 77 (1995), p 2479.Google Scholar
3. Persson, P.O.Å., Wahab, Q., Hultman, L., Nordell, N., Schöner, A., Rottner, K., Olsson, E. and Linnarson, M.K., Mater. Sci. Forum 264–268 (1998), p 413.Google Scholar
4. Persson, P.O.Å., Jansson, M., Hallén, A. and Hultman, L., Presented at ECSCRM 2000, accepted for publication.Google Scholar
5. Kimoto, T., Itoh, A., Inoue, N., Takemura, O., Yamamoto, T., Nakajima, T. and Matsunami, H., Mater. Sci. Forum 264–268 (1998), p 675.Google Scholar
6. Troffer, T., Schadt, M., Frank, T., Itoh, H., Pensl, G., Heindl, J., Strunk, H.P. and Maier, M. Phys. Stat. Sol. 162 (1997), p 277.Google Scholar
7. Cowern, N.E.B., Janssen, K.T.F. and Jos, H.F.F., J. Appl. Phys. 68 (1990), p 6191.Google Scholar