Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T10:38:44.065Z Has data issue: false hasContentIssue false

Structural Inhomogeneity of SrBi2Ta2O9Thin Films Prepared by Layer-by-Layer Technique

Published online by Cambridge University Press:  17 March 2011

J. B. Xu
Affiliation:
Department of Electronic Engineering and Material Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
G. D. Hu
Affiliation:
Department of Electronic Engineering and Material Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
S. P. Wong
Affiliation:
Department of Electronic Engineering and Material Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
Get access

Abstract

Grazing incidence x-ray diffraction has been employed to perform the depth-profile analysis on SrBi2Ta2O9 (SBT) thin films with different preferential orientations. For the polycrystalline SBT thin film, the change in structural orientation occurs only within the 15-nm-thick top layer, which is associated with the formation of the (200)-predominant SBT thin film prepared by the layer-by-layer annealing process. The inhomogeneity of structural orientation is more significant in the full film thickness for the (200)- predominant SBT thin film. (0010) peak can only be observed for the grazing angle larger than 0.6°. A layer with the highest ratio of I(200)/I(115) is found in the top surface layer (i.e., the latest layer during deposition) of the (200)-predominant SBT thin film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arauzo, C. A. -Paz de, Cuchiaro, J. D., McMillan, L. D., Scott, M. C., and Scott, J. F., Nature (London) 374, 627 (1995)Google Scholar
2. Kim, Seung-Hyun, Kim, D. J., Maria, J. -P., Kingon, A. I., Streiffer, S. K., Im, J., Auciello, O., and Krauss, A. R., Appl. Phys. Lett. 76, 496 (2000)Google Scholar
3. Aizawa, Koji, Tokumitsu, Eisuke, Okamoto, Kojiro, and Ishiwara, Hiroshi, Appl. Phys. Lett. 76, 2609 (2000)Google Scholar
4. Desu, S. B., and Vijay, D. P., Mater. Sci. Eng. B32, 83 (1995)Google Scholar
5. Hu, G. D. and Xu, J. B. (unpublished)Google Scholar
6. Hu, G. D., Wilson, I. H., Xu, J. B., Cheung, W. Y., Wong, S. P., and Wong, H. K., Appl. Phys. Lett. 74, 1221 (1999)Google Scholar
7. Hu, G. D., Xu, J. B., and Wilson, I. H., Appl. Phys. Lett. 75, 1610 (1999)Google Scholar
8. Hu, G. D., Xu, J. B., Wilson, I. H., Cheung, W. Y., and Wong, S. P., Appl. Phys. Lett. 74, 3711, (1999)Google Scholar
9. Hu, G. D., Wilson, I. H., Xu, J. B., Li, C. P., and Wong, S. P., Appl. Phys. Lett. 76, 1758 (2000)Google Scholar
10. Toney, M. F., Huang, T. C., Brennan, S. and Rek, Z., J. Mater. Res. 3, 351 (1988)Google Scholar
11. Neerinck, D. G. and Vink, T. J., Thin Solid Films 278, 12 (1996)Google Scholar