Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-15T14:30:37.568Z Has data issue: false hasContentIssue false

Structural Relaxation, “Memory Behaviour”, Specific Heat Anomaly and Localized Motions in Amorphous Solids

Published online by Cambridge University Press:  16 February 2011

G. P. Johari*
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7Canada
Get access

Abstract

Dielectric and mechanical relaxation spectroscopy of thermoplastics and thermosets show that, in the former, ageing is related only to the spontaneous structural relaxation towards a lower energy, but still disordered, structure and decreases the strength of the β- relaxation process. Ageing of a thermoset initially increases the strength of its (dielectric) β-relaxation as a result of diffusionallowed chemical reactions, which increase the number of dipolar groups, and later decreases it towards a limiting value. The decrease in the strength of β-relaxation on ageing of polymers and other amorphous solids suggests that structural relaxation causes a collapse of low-density, high-entropy, regions or “soft-sites” randomly distributed in the structure of a glassy material. The increase in the strength of β-relaxation observed in thermosets is higher than calculated from the extent of chemical reactions that occur during their structural relaxation at T<Tg. It is suggested that these effects should be included in the phenomenological theories for both the physical ageing and “memory behaviour” - the latter can be conveniently studied by both dielectric and mechanical spectroscopy and by differential scanning calorimetry. Structural relaxation also decreases the magnitude of the specific heat anomaly in amorphous solids and can be used to experimentally test the postulate that tunneling centres involved in the low-temperature phonon properties are related to the presence of “islands of mobility” or “soft-sites” in an otherwise rigid glassy matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tool, A.Q. and Eichlin, C.G., J. Am. Ceram. Soc. 14 276 (1931).Google Scholar
[2] Ritland, H.N., J. Am. Ceram. Soc. 39, 403 (1956).CrossRefGoogle Scholar
[3] Kovacs, A.J., Fortschr. Hochpolym. Forsch. 3, 394 (1963).Google Scholar
[4] Cavaillé, J.Y., Perez, J. and Johari, G.P., Phys. Rev. B 39,2411 (1989).Google Scholar
[5] Sidebottom, D. and Johari, G.P., Chem. Phys. (1990) in press.Google Scholar
[6] Mangion, M.B.M. and Johari, G.P., J. Polym. Sci. Polym. Phys. 28 71 (1990).Google Scholar
[7] Johari, G.P., Ann. N.Y. Acad. Sci. 279,117 (1976); Jour. de Phys. C8 46. 567 (1985).Google Scholar
[8] Frank, M. and Stuart, H., Kolloid Z. 225, (1968).Google Scholar
[9] Petrie, S.E.B., J. Macromol. Sci. Phys. 12, 225 (1976).Google Scholar
[10] Struik, L.C.E., Ann. N.Y. Acad. Sci. 279, 78 (1976), Polym. 28 57 (1987).Google Scholar
[11] Etienne, S., Cavaillé, J.Y., Perez, J. and Johari, G.P., Phil Mag. 51A, L35 (1985).Google Scholar
[12] Cavaillé, J.Y., Etienne, S., Perez, J., Monnerie, L. and Johari, G.P., Polymer, 27, 686 (1986).Google Scholar
[13] Haddad, J. and Goldstein, M., J. Noncryst. Solids 30, 1 (1978).Google Scholar
[14] Johari, G.P., Phil. Mag. 46, 549 (1982).Google Scholar
[15] Johari, G.P., J. Chem. Phys. 77, 4619 (1982).Google Scholar
[16] Johari, G.P., in “Molecular Dynamics and Relaxation Phenomena in Glasses”, (Eds. Dorfmuller, T. and Williams, G.), Lecture Notes in Physics (Springer-Verlag, Heidelberg, 1987), p. 90.Google Scholar
[17] Pathmanathan, K., Cavaillé, J.Y. and Johari, G.P., J. Polym. Sci. Polym. Phys. 27, 1519 (1989).Google Scholar
[18] Muzeau, E. and Johari, G.P., Chem. Phys. (1990) in press.Google Scholar
[19] Pohl, R.O., Phase Transitions 5, 239 (1985).Google Scholar
[20] Johari, G.P., Phys. Rev. B 33,7201 (1986).Google Scholar
[21] Johari, G.P. and Goldstein, M., J. Chem. Phys. 53 2372 (1970).CrossRefGoogle Scholar
[22] Tool, A.Q., J. Am. Ceram. Soc., 29 (1946) 240.CrossRefGoogle Scholar
[23] Moynihan, C.T., Macedo, P.B., Montrose, C.J., Gupta, P.K., DeBolt, M.A., Dill, J.F., Dom, B.E., Drake, P.W., Easteal, E.J., Elterman, P.B., Moeller, R.P., Sasabe, H. and Wilder, J.A., Ann. New York Acad. Sci. 279 1 (1976).Google Scholar
[24] Field, M.B. and Redwine, R.H., J. Am. Ceram. Soc. 51, 112 (1968).Google Scholar
[25] Amrhein, E.M. and Muller, F.H., J. Am. Chem. Soc. 90, 3146 (1968).Google Scholar
[26] Muzeau, E., Perez, J. and Johari, G.P., Macromolecules (submitted).Google Scholar
[27] Stevels, J.M., J. Non-Cryst. Solids 40 69 (1980).Google Scholar
[28] Read, B.E., paper presented at Workshop on “Relaxations in Disordered Systems” 18–29 June 1990, Crete (unpublished).Google Scholar
[29] Davies, R.O. and Jones, G.O., Adv. Phys. 2, 370 (1953).Google Scholar
[30] Scherer, G.W., “Relaxation in Glass and Composites” (Wiley, N.Y., 1986).Google Scholar
[31] Hodge, I.M., Macromolecules, 20, 2897 (1987).CrossRefGoogle Scholar
[32] Mazurin, O.V., Rekhson, S.M. and Startsev, Yu. K., Fiz. Khim. Stelcla, 1, 438 (1975).Google Scholar
[33] Narayanaswamy, O.S., J. Am. Ceram. Soc. 54, 491 (1971).CrossRefGoogle Scholar
[34] Plazek, D.J. and Berry, G.C. in “Glass Science and Technology”, vol.3, edited by Uhlman, R. and Kreidl, N.J. (Academic N.Y., 1986), p. 363.Google Scholar
[35] Kovacs, A.J., Hutchinson, J.M. and Aklonis, J.J. in “The Structure of Non-Crystalline Materials”, edited by Davis, E.A. and Gaskell, P.H., (Taylor and Francis, Lond., 1976), p. 153.Google Scholar
[36] Moynihan, C.T., Easteal, A.J., DeBolt, M.A. and Tucker, J.J., J. Am. Ceram. Soc. 59, 12 (1976).Google Scholar
[37] Perez, J., Polymer, 29, 483 (1988).Google Scholar
[38] Simha, R., Roe, J.M. and Nanda, V.S., J. Appl. Phys. 43, 4312 (1972).Google Scholar
[39] Goldstein, M., Ann. N.Y. Acad. Sci. 279,68 (1976); J. Chem. Phys. 64., 4767 (1976).CrossRefGoogle Scholar
[40] Gujrati, P.D. and Goldstein, M., J. Chem. Phys. 84, 859 (1980).Google Scholar
[41] Johari, G.P., Ann. N.Y. Acad. Sci. 279 102 (1976); Phil. Mag. 41, 41 (1980).Google Scholar
[42] Suga, H. and Seki, S., Bull. Chem. Soc. (Japan) 46, 3020 (1973).Google Scholar
[43] Johari, G.P. in “Plastic Deformation of Amorphous and Semi-crystalline Materials”, Les Houches Lectures 1982, (Les Editions de Physique, Les Ullis, 1982), p. 109.Google Scholar
[44] Doolittle, A.K., J. Appl. Phys. 22, 1471 (1951); A.K. Doolittle, J. Appl. Phys. 23, 236 (1952).Google Scholar
[45] Cohen, M.H. and Turnbull, D., J. Chem. Phys. 5, 3038 (1970).Google Scholar
[46] Adam, G. and Gibbs, J.H., J. Chem. Phys. 43, 139 (1965).Google Scholar
[47] Kovacs, A.J., Stratton, R.A. and Ferry, J.D., J. Phys. Chem. 67 152 (1963).CrossRefGoogle Scholar
[48] Pathmanathan, K., Johari, G.P., Faivre, J.P. and Monnerie, L., J. Polym. Sci. Polym. Phys. 24 1587(1986).Google Scholar
[49] Baudelet, B., Thèse (Université de Nancy, France, 1970).Google Scholar
[50] Spinner, S. and Napolitano, A., J. Res. Natl. Bur. Stand. 70A, 147 (1966).Google Scholar
[51] Hofer, K., Perez, J. and Johari, G.P., Phil. Mag. (1990) submitted.Google Scholar
[52] Barton, J.M., Adv. Polym. Sci. 72, 111 (1985).Google Scholar
[53] Candau, S., Bastide, J. and Delsanti, M., Adv. Polym. Sci. 44, 27 (1982).Google Scholar
[54] Plazek, D.J. and Frund, Z.A. Jr., J. Polym. Sci., Polym. Phys. 28,431 (1990).Google Scholar
[55] Hofer, K. and Johari, G.P., Macromolecules (submitted).Google Scholar
[56] DiMarzio, E.A. and Gibbs, J.H., J. Polym. Sci. 1A, 147 (1963).Google Scholar
[57] DiMarzio, E.A., J. Res. Natl. Bur. Stand. 68A, 611 (1964).Google Scholar
[58] Kirkwood, J.G., J. Chem. Phys. 7, 911 (1939).Google Scholar
[59] Frohlich, H., “Theory of Dielectrics” (Oxford, 1949).Google Scholar
[60] Smyth, C.P., “Dielectric Behaviour and Structure” (Wiley, 1962).Google Scholar
[61] Mikolajczak, G., Cavaill, J.Y. and Johari, G.P., Polymer, 28, 2023 (1987).Google Scholar
[62] Mangion, M.B.M. and Johari, G.P., Macromolecules 23, 3687 (1990).Google Scholar
[63] Anderson, P.W., Halperin, B.I. and Varma, C.M., Philos. Mag. 25, 1 (1972).Google Scholar
[64] Phillips, W.A., J. Low Temp. Phys. 7, 351 (1972).Google Scholar
[65] Hunklinger, S. and Arnold, W., in “Physical Acoustics”, edited by Mason, W.P. and Thurston, R.N. (Academic, N.Y., 1977), vol.12, p. 155.Google Scholar
[66] Cohen, M.H. and Grest, G.S., Phys. Rev. Lett. 45 1271 (1980).Google Scholar
[67] Phillips, J.C., Phys. Rev. B24,1744 (1981).Google Scholar
[68] Chang, S.S. and Bestul, A.B., J. Chem. Thermodyn. 6, 325 (1974).Google Scholar
[69] Lasjaunias, J.C., Picot, B., Ravex, A. and Vandorpe, M., in Extended Abstracts of the Second Conference of the Condensed Matter Division of European Physical Society of Dielectrics and Phonons, Budapest, 1974 (European Physical Society, Budapest, 1974), p. 199.Google Scholar
[70] Calemeczuk, R., Thèse, Docteur des Sciences, (L'Université Scientifique et Medicale et L'Institute National Polytechnique de Grenoble, 1983), p. 133.Google Scholar
[71] Etienne, S., Thèse, Docteur des Sciences, (Universitd de Lyon, France, 1981).Google Scholar
[72] Lasjaunias, J.C., Penn, G., Ravex, A. and Vandorpe, M., J. Physique, L41, L131 (1980), J. Noncryst. Solids 57. 157 (1983).Google Scholar
[73] Lasjaunias, J.C., Penn, G. and Vandorpe, M. in “Phonon Scattering in Condensed Matter”, Maris, H.J., ed. (Plenum, 1980), p. 25.CrossRefGoogle Scholar
[74] Lasjaunias, J.C., Ravex, A., Laborde, D. and Bethoux, O., Physica, 126B, 126 (1984).Google Scholar
[75] Ravex, A., Lasjaunias, J.C. and Bethoux, O., J. Phys. F. Met. Phys. 14, 329 (1984).Google Scholar