Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T11:04:18.069Z Has data issue: false hasContentIssue false

Structural Stability of Nano-Sized Clusters

Published online by Cambridge University Press:  01 February 2011

J. Th. M. De Hosson
Affiliation:
Dept. of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
G. Palasantzas
Affiliation:
Dept. of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
T. Vystavel
Affiliation:
Dept. of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
S. Koch
Affiliation:
Dept. of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Get access

Abstract

This contribution presents challenges to control the microstructure in nano-structured materials via a relatively new approach, i.e. using a so-called nanocluster source. An important aspect is that the cluster size distribution is monodisperse and that the kinetic energy of the clusters during deposition can be varied. Interestingly the clusters are grown in extreme non-equilibrium conditions, which allow obtaining metastable structures of metals and alloys. Because one avoids the effects of nucleation and growth on a specific substrate one may tailor the properties of the films by choosing the appropriate preparation conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ovid'ko, I.A., Science, 295, 2386 (2002)Google Scholar
2. Gutkin, M.Yu., Ovid'ko, I.A., Pande, C.S., in: Nanoclusters and nanocrystals, Ed. Nalwa, H.S., Am. Sci. Pub, 255 (2003)Google Scholar
3. Leyland, A. and Matthews, A., Surface and Coating Technology, ICMCTF conference 2003, in print 2004.Google Scholar
4. Van Vliet, K. J., Li, J., Zhu, T., Yip, S. and Suresh, S. Phys. Rev. B, 67, 104105, 2003 andGoogle Scholar
Weertman, J. R., Farkas, D., Kung, H., Mayo, M., Mitra, R., and Van Swygenhoven, H., MRS Bulletin, 24, 44 (1999).Google Scholar
5. Haberland, H., Moseler, M., Qiang, Y., Rattunde, O., Reiners, T., and Thurner, Y., Surface Review and Letters 3, 887890 (1996).Google Scholar
6. Granqvist, C. G. and Buhrman, R. A., Journal of Applied Physics 47, 22002219 (1976).Google Scholar
7. For main reviews in the field see also: Binns, C., Surf. Sci. Rep. 44, 1 (2001);Google Scholar
Eberhardt, W., Surf. Sci. 500, 242 (2002);Google Scholar
Jensssen, P., Rev. Mod. Phys. 71, 1695 (1999);Google Scholar
Melinon, P. et al., Int. J. Mod. Phys. B 9, 339 (1995).Google Scholar
8. Vystavel, T., Palasantzas, G., Koch, S. A., De Hosson, J.Th.M., Appl. Phys. Lett. 82, 197, (2003)Google Scholar
9. Palasantzas, G., Koch, S. A., De Hosson, J.Th.M., Appl. Phys. Lett. 81, 1089 (2002).Google Scholar
10. Yao, D., Chen, Y. Y., Hsu, C. M., Lin, H. M., Tung, C. Y., Tai, M. F., Wang, D. H., Wu, K. T., and Suo, C. T., Nanostructured Materials 6, 933936 (1995).Google Scholar
11. Chen, Y. Y., Yao, Y. D., Wang, C. R., Li, W. H., Chang, C. L., Lee, T. K., Hong, T. M., Ho, J. C., and Pan, S. F., Physical Review Letters 84, 49904993 (2000).Google Scholar
12. Löffler, J. F., Braun, H.-B., and Wagner, W., Physical Review Letters 85, 19901993 (2000).Google Scholar
13. Binns, C., Baker, S. H., Maher, M. J., Louch, S., Thornton, S. C., Edmonds, K. W., Dhesi, S. S., and Brookes, N. B., physica status solidi (a) 189, 339350 (2002).Google Scholar
13. Gangopadhyay, S., Hadjipanayis, G. C., Shah, S. I., Sorensen, C. M., Klabunde, K. J., Papaefthymiou, V., and Kostikas, A., Journal of Applied Physics 70, 58885890 (1991).Google Scholar
15. Gong, W., Li, H., Zhao, Z., and Chen, J., Journal of Applied Physics 69, 51195121 (1991).Google Scholar
16. Gangopadhyay, S., Hadjipanayis, G. C., Dale, B., Sorensen, C. M., Klabunde, K. J., V. P., and, Kostikas, A., Phys. Rev. B 45, 97789787 (1992).Google Scholar
17. Gangopadhyay, S., Hadjipanayis, G. C., Sorensen, C. M., and Klabunde, K. J., Journal of Applied Physics 73, 69646966 (1993).Google Scholar
18. Bødker, F., Mørup, S., and Linderoth, S., Phys. Rev. Lett. 72, 282285 (1994).Google Scholar
19. Holdenried, M., Hackenbroich, B., and Micklitz, H., Journal of Magnetism and Magnetic Materials 231, L13–L19 (2001).Google Scholar
20. Yao, Y. D., Chen, Y. Y., Hsu, C. M., Lin, H. M., Tung, C. Y., Tai, M. F., Wang, D. H., Wu, K. T., and Suo, C. T., Nanostructured Materials 6, 933936 (1995).Google Scholar
21. Dupuis, V., Perez, J. P., Tuaillon, J., Paillard, V., Mélinon, P., Perez, A., Barbara, B., Thomas, L., Fayeulle, S., and Gay, J. M., Journal of Applied Physics 76, 66766678 (1994).Google Scholar
22. Upward, M. D., Cotier, B. N., Moriarty, P., Beton, P. H., Baker, S. H., Binns, C., and Edmonds, K., Journal of Vacuum Science & Technology B 18, 26462649 (2000).Google Scholar
23. Besley, N. A., Johnston, R. L., Stace, A. J., and Uppenbrink, J., Journal of Molecular Structure (THEOCHEM) 341, 7590 (1995).Google Scholar
24. Wolf, D., Philosophical Magazine A 63, 337361 (1991)Google Scholar
25. Spencer, M. J. S., Hung, A., Snook, I. K., and Yarovsky, I., Surface Science 513, 389398(2002)Google Scholar
26. Zhao, J., Chen, X., and Wang, G., Physics Letters A 214, 211214 (1996).Google Scholar
27. Berces, A., Hackett, P., Lian, L., Mitchell, S., and Rayner, D., Journal of Chemical Physics 108, 54765490 (1998).Google Scholar
28. Kumar, V. and Kawazoe, Y., Physical Review B 65, 125403 (2002).Google Scholar
29. Nanomaterials: synthesis, properties and applications; edited by Edelstein, A. S. and Cammarata, R. C. (Institute of Physics Publishing, Bristol, 1998).Google Scholar
30. Petrucci, M., Pitt, C. W., Reynolds, S. R., Milledge, H. J., Mendelssohn, M. J., Dineen, C., and Freeman, W. G., Journal of Applied Physics 63, 900909 (1988).Google Scholar
31. Macintyre, J.E. (ed.) in Dictionary of inorganic compounds, volumes 1–3, Chapman & Hall, London, UK, 1992.Google Scholar
32. Buffat, P. and Borel, J.-P., Physical Review A 13, 22872298 (1976).Google Scholar
32. Schmidt, M. and Haberland, H., Comptes Rendus Physique 3, 327340 (2002).Google Scholar
34. Lewis, L. J., Jensen, P., and Barrat, J.-L., Physical Review B 56, 22482257 (1997).Google Scholar
35. Jensen, P., Reviews of Modern Physics 71, 16951735 (1999)Google Scholar
36. Stoldt, C. R., Cadilhe, A. M., Jenks, C. J., Wen, J.-M., Evans, J. W., and Thiel, P. A., Physical Review Letters 81, 29502953 (1998).Google Scholar
37. Nichols, F. A. and Mullins, W. W., Journal of Applied Physics 36, 1826 (1965).Google Scholar
38. Combe, N., Jensen, P., Pimpinelli, A., Phys. Rev. Lett. 85, 110 (2000)Google Scholar
39. Vystavel, T., Palasantzas, G., Koch, S. A., Th, J., De Hosson, M., Appl. Phys. Lett. 83, 9309 (2003)Google Scholar
40. Moseler, M., Rattunde, O., Nordiek, J., Haberland, H., Nucl. Instr. and Meth. in Phys. Res. B 164–165, 522 (2000).Google Scholar
41. Buzio, R., Gnecco, E., Boragno, C., Valbusa, U., Piseri, P., Barborini, E., and Milani, P., Surf. Sci. 444, L1 (2000).Google Scholar
42. Sarid, D., Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces, Revised Edition (Oxford University Press, New York, 1994).Google Scholar
43. Hornyak, G. L., Peschel, S., Sawitowski, T., and Schmid, G., Micron 29, 183 (1998).Google Scholar
44. German, R. M., Sintering theory and practice, Wiley, New York, 1996, p. 100.Google Scholar
45. Sutton, A. P. and Balluffi, R. W., Interfaces in Crystalline Materials (Oxford University Press Inc., New York, 1995) pp. 792793.Google Scholar
46. Eaglesham, D. J., White, A. E., Feldman, L. C., Moriya, N., and Jacobson, D. C., Phys. Rev. Lett. 70, 1643 (1993).Google Scholar
47. Zimmermann, C. G., Yeadon, M., Nordlund, K., Gibson, J. M., Averback, R. S., Herr, U., and Samwer, K., Phys. Rev. Lett. 83, 1163 (1999).Google Scholar
48. Zhao, Y. P., Wang, G. -C., and Lu, T. -M., Characterization of amorphous and crystalline rough surfaces-principles and applications, (Experimental Methods in the Physical Science Vol. 37, Academic Press, 2000)Google Scholar
49. Meakin, P., Fractals, Scaling, and Growth Far from Equilibrium (Cambridge University Press, Cambridge, 1998).Google Scholar
50. Krim, J. and Palasantzas, G., Int. J. of Mod. Phys. B 9, 599 (1995).Google Scholar
51. Aué, J.-J and De Hosson, J.Th.M., Appl. Phys. Lett. 71, 1347 (1997).Google Scholar
52. Kardar, M., Parisi, G., and Zhang, Y. C., Phys. Rev. Lett. 56, 889 (1986).Google Scholar
53. Halpin-Heally, T., Phys. Rep. 254, 215 (1995);Google Scholar
Forest, M. and Tang, L. –H., Phys. Rev. Lett., 64, 1405(1991)Google Scholar
54. Wolf, W. E. and Villain, J., Europhys. Lett. 13, 389 (1990).Google Scholar
55. Lai, Z. -W. and Das Sarma, S., Phys. Rev. Lett. 66, 2348 (1991).Google Scholar
56. Kashchiev, D., Surf. Sci. 55, 477 (1976);Google Scholar
Lewis, B., Surf. Sci. 21, 289 (1970).Google Scholar
57. Haberland, H., Karrais, M., Mall, M., Thurner, Y., J. Vac. Sci. Technol. A 10, 3266 (1992);Google Scholar
Haberland, H. et al., Nucl. Instrum. Methods Phys. Res. Sect. B 80/81, 1320 (1993).Google Scholar
58. Yamada, I., Nucl. Instrum. Meth. B 55, 544 (1991).Google Scholar