Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T16:25:51.961Z Has data issue: false hasContentIssue false

Studies on the Process of Formation, Nature and Stability of Binding Sites in Molecularly Imprinted Polymers

Published online by Cambridge University Press:  01 February 2011

F. Lanza
Affiliation:
Polymer Research Unit, Material Ireland, Trinity College Dublin, Ireland
M. Rüther
Affiliation:
Polymer Research Unit, Material Ireland, Trinity College Dublin, Ireland
A.J. Hall
Affiliation:
Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany (e-mail: france@ak-unger.chemie.unimainz. de)
C. Dauwe
Affiliation:
Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany (e-mail: france@ak-unger.chemie.unimainz. de)
B. Sellergren
Affiliation:
Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany (e-mail: france@ak-unger.chemie.unimainz. de)
Get access

Abstract

In Molecular Imprinting the nature of the templated binding sites and the mechanism of their formation are still poorly understood. For this reason our groups are carrying out fundamental studies concerning known imprinting protocols, with the primary aim of shedding light on the role of the template in the different steps of the polymerisation, from the formation of primary chains to the build-up of the porous structure. In this paper we report our initial results concerning copolymers of methacrylic acid (MAA) and ethyleneglycol dimethacrylate (EDMA) and their formation in presence or absence of the templates 9-ethyladenine, ametryn or terbutylazine. Monitoring the monomer disappearance by 1H-NMR showed that the presence of templates such as 9-ethyladenine significantly retarded the polymerisation but otherwise had minor influence on the relative reactivity of the monomers. The latter appeared in most cases to be stoichiometrically incorporated into the polymer. The signals arising from the template experienced little or no shift in the early stage of the polymerisation, although pronounced broadening was observed. By delaying the addition of the template, it was observed that binding sites with high selectivity could be induced more than one hour after the gel point of the system had been passed. Finally, the results of post-polymerisation curing on the dry and swollen state porosities and the recognition properties of terbutylazine imprinted polymers are reported. This treatment when performed at temperatures between 100-120°C, slightly enhanced the selectivity of the polymers, whereas at higher temperatures the polymers lost their molecular recognition properties. Swollen state porosity derived from inverse size exclusion chromatography (ISEC) revealed an interesting sharpening of the pore size distribution for the imprinted compared to the non-imprinted polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sellergren, B., (ed) Molecularly imprinted polymers. Man-made mimics of antibodies and their applications in analytical chemistry. Techniques and instrumentation in analytical chemistry, Vol. 23, (Elsevier 2001).Google Scholar
2. Shea, K. J., Dougherty, T. K., J. Am. Chem. Soc. 108, 10911093 (1986).Google Scholar
3. Shea, K. J., Sasaki, D. Y., Stoddard, G. J., Macromolecules 21, 1722 (1989)Google Scholar
4. Shea, K. J., Sasaki, D. Y., J. Am. Chem. Soc. 111, 34423444 (1989).Google Scholar
5. Sellergren, B., Hall, A. J., in Molecularly imprinted polymers. Man-made mimics of antibodies and their applications in analytical chemistry., Vol. 23, edited by Sellergren, B. (Elsevier 2001), p. 2157.Google Scholar
6. Nicholls, I. A., Chem. Lett. 11 1035–6 (1995).Google Scholar
7. Nicholls, I. A., Adv. Mol. Cell Biol. 15B, 671679 (1996).Google Scholar
8. Sellergren, B., Lepistö, M., Mosbach, K., J. Am. Chem. Soc. 110, 5853–60 (1988).Google Scholar
9. Sellergren, B., Shea, K. J., J. Chromatogr. 635, 31 (1993)Google Scholar
10. Chen, Y., Kele, M., Sajonz, P., Sellergren, B., Guiochon, G., Anal. Chem. 71, 928938 (1999).Google Scholar
11. Chen, W. Y., Chen, C. S., Lin, F. Y., J. Chromatogr., A 923, 16 (2001).Google Scholar
12. Allender, C. J., Heard, C. M., Brain, K. R., Chirality 9, 238242 (1997).Google Scholar
13. Umpleby, R. J. II, Bode, M., Shimizu, K. D., Analyst 125, 12611265 (2000).Google Scholar
14. Wulff, G., Heide, B., Helfmeier, G., J. Am. Chem. Soc. 108, 10891091 (1986).Google Scholar
15. Lübke, C., Lübke, M., Whitcombe, M. J., Vulfson, E. N., Macromolecules 33, 50985105 (2000).Google Scholar
16. Quaglia, M., Chenon, K., Hall, A. J., Lorenzi, E. De, Sellergren, B., J. Am. Chem. Soc. 123, 21462154 (2001).Google Scholar
17. Shea, K. J., Spivak, D. A., Sellergren, B., J. Am. Chem. Soc. 115, 33683369 (1993).Google Scholar
18. Dauwe, C., Sellergren, B., J. Chromatogr., A 753, 191200 (1996).Google Scholar
19. Lanza, F., Sellergren, B., Anal. Chem. 71, 20922096 (1999).Google Scholar
20. Lancelot, G., J. Am. Chem. Soc. 99 7037 (1977).Google Scholar
21. Kuchta, F.D., Herk, A.M. van, German, A.L., Macromolecules 33, 36413649 (2000)Google Scholar
22. Rüther, M., Lanza, F., Hall, A. J., Sellergren, B. (in preparation).Google Scholar
23. Davis, M. E., Katz, A., Ahmad, W. R., Chem. Mater. 8 18201839 (1996).Google Scholar