Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-22T07:18:52.918Z Has data issue: false hasContentIssue false

Study of the Reduction of Turbulent Drag by Photon Correlation Spectroscopy

Published online by Cambridge University Press:  25 February 2011

P. Tong
Affiliation:
Department of Physics, Oklahoma State University, Stillwater, OK 74078
W. I. Goldburg
Affiliation:
Department of Physics, University of Pittsburgh, Pittsburgh, PA 15260
J. S. Huang
Affiliation:
Exxon Research and Engineering Company, Annandale, NJ 08801
Get access

Abstract

Turbulent drag reduction in a dilute polymer solution has been studied using the technique of photon-correlation homodyne spectroscopy to measure velocity differences in a concentric cylinder cell, in which the inner cylinder rotates. A large anisotropic suppression of turbulent velocity differences is found in the bulk region of the turbulent fluid. The suppression effect occurs at various length scales up to ∼ 1 mm, which is far beyond the Kolmogorov dissipation length ℓd (∼ 0.04 mm). The large-scale velocity fluctuations are suppressed, but their statistical properties remain unchanged. The small-scale fluctuations, on the other hand, are damped out much more strongly, resulting in a different functional form for the velocity density function. The latter observation is consistent with the notion that the polymer-turbulence interaction causes a truncation of the turbulent energy cascade at small scales.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lumley, J. L., Annu. Rev. Fluid Mech., 1, 367 (1969); J. Polym. Sci. Macromol. Rev., 7, 263 (1973).CrossRefGoogle Scholar
2 Ryskin, G., Phys. Rev. Lett. 59, 2059 (1987); J. Fluid Mech. 178, 423 (1987).CrossRefGoogle Scholar
3 Bhattacharjee, J. K. and Thirumalai, D., Phys. Rev. Lett., 67, 196 (1991).Google Scholar
4 Tabor, M. and Gennes, P. G. de, Europhys. Lett., 2 (7), 519 (1986); P. G. de Gennes, Physica A (Amsterdam), 140, 9 (1986).CrossRefGoogle Scholar
5 Landahl, M. T., Phys. Fluids, 20, S55 (1977).Google Scholar
6 Lumley, J. L. and Kubo, I., in The Influence of Polymer Additives on Velocity and Temperature Fields, edited by Gampert, B. (Springer, Berlin, 1984), p. 3.Google Scholar
7 Berne, B. J. and Pecora, R., Dynamic Light Scattering, (Wiley, New York, 1976).Google Scholar
8 Tong, P., Goldburg, W. I., Chan, C. K., and Sirivat, A., Phys. Rev. A 37, 2125 (1988).Google Scholar
9 Tong, P. and Goldburg, W. I., Phys. Fluids 31, 2841 (1988); P. Tong and W. I. Goldburg, Phys. Lett. A, 127, 147 (1988); W. I. Goldburg and P. Tong, Physica Scripta, 40, 424 (1989).Google Scholar
10 Goldburg, W. I., Tong, P. and Pak, H. K., Physica D, 38, 134 (1989); H. K. Pak, W. I. Goldburg, and A. Sirivat, Fluid Dynamics Res. (in press).Google Scholar
11 Atta, C. W. van and Park, J., in Lectures notes in physics, Vol. 12, Statistical Models and Turbulence, eds. Rosenblatt, M. and Atta, C. W. van (Springer, Berlin, 1972) p. 402.Google Scholar
12 Knight, B. and Sirovich, L., Phys. Rev. Lett. 65, 1356 (1990).CrossRefGoogle Scholar
13 Onuki, A., Prog. Theor. Phys., S99, 382 (1989).CrossRefGoogle Scholar
14 Kolmogorov, A. N., Dokl, C. R.. Acad. Sci. URSS., 30, 301; 31, 538 (1941).Google Scholar
15 DiPrima, R. C. and Swinney, H. L., in Hydrodynamic Instabilities and the Transition to Turbulence, edited by Swinney, H. L. and Gollub, J. P. (Berlin, Springer 1985).Google Scholar
16 Tong, P., Goldburg, W. I., Huang, J. S., and Witten, T. A., Phys. Rev. Lett. 65, 2780 (1990).Google Scholar
17 Tong, P., Goldburg, W. I. and Huang, J. S., submitted to Phys. Rev. A15..Google Scholar
18 Frisch, U., Sulem, P., and Nelkin, M., J. Fluid Mech. 87, 719 (1978).Google Scholar
19 Landau, L. D. and Lifsgitz, E. M., Fluid Mechanics, (Pergmmon, London, 1959).Google Scholar
20 Kwade, M., Rheol. Acta., 21, 120 (1982); R. Scharf, Rheol. Acta., 24, 385 (1985).Google Scholar
21 Schlichting, H., Boundary-Layer Theory, Seventh edition (McGraw-Hill, New York, 1979).Google Scholar