Hostname: page-component-cb9f654ff-hn9fh Total loading time: 0 Render date: 2025-08-30T22:43:46.106Z Has data issue: false hasContentIssue false

Subboundary Spacing and Appearance in Laser Zone-MeltingRecrystallization of Silicon Onamorphous Substrate

Published online by Cambridge University Press:  25 February 2011

J.P. Joly
Affiliation:
L.E.T.I. -C.E.A. -I.R.D.I. -Commissariat A lEnergie Atomique LETI -CENG -85 X -38041 Grenoble Cedex -FRANCE
J.M. Hode
Affiliation:
L.E.T.I. -C.E.A. -I.R.D.I. -Commissariat A lEnergie Atomique LETI -CENG -85 X -38041 Grenoble Cedex -FRANCE
J.C. Castagna
Affiliation:
L.E.T.I. -C.E.A. -I.R.D.I. -Commissariat A lEnergie Atomique LETI -CENG -85 X -38041 Grenoble Cedex -FRANCE
Get access

Abstract

Recrystallized silicon films on amorphous substrates are mainlycharacterized by subgrain boundaries separated by a few microns. Usingseedina from the silicon substrate (lateral epitaxy), subboundary free areasadjacent to the seed are achieved in the direction of the beam scanninq. Wehave demonstrated the large influence of the growth direction and of thethickness of the silicon layer together on the incubation distance and onthe spacing of the subboundaries. Surprisingly, a variation of the arowth(scan) velocity of two orders of magnitude (from 1 to 70 cm/s) has nonoticeable influence on these narameters. A I × 10 elliptical Ar+laser beam has been used in these experiments. An interpretation of theseresults in terms of lateral (step) growth and stress will be given.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Maby, E.W., Atwater, H.A., Keigler, A.L., and Johnson, N.M., Appl. Phys. Lett. 43, 482 (1983)Google Scholar
2. Geis, M.W., Smith, H.I., Tsaur, B.Y., Fan, J.C.C., Silversmith, D.J., and Mountain, R.W., J. Electrochem. Soc. 129, 2812 (1983)Google Scholar
3. Lan, H.W., Pinizzotto, R.F., and Tash, A.F., J. Electrochem. Soc. 128, 1981 (1981)Google Scholar
4. Rensch, D.B., and Chen, J.Y., IEEE Electron Device Letters EDL 5(2), 38 (1984)Google Scholar
5. Bolling, G.F., and Tiller, W.A., J. Appl. Phys. 31, 2040 (1960)Google Scholar
6. Cahn, J.W., Hillig, W.B., and Sears, G.W., Acta Metallurqica 12, 1421 (1964)Google Scholar
7. Davydov, D.A., Maslov, V.N., Sov. Phys. Cryst. 9, 393 (1965)Google Scholar
8. Pinizzotto, R.F., J. Cryst. Growth 63, 559 (1983)Google Scholar
9. Zorabedian, P., Adar, F., Appl. Phys. Lett. 43, 177 (1983)Google Scholar