Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T02:56:57.959Z Has data issue: false hasContentIssue false

A Subnanoscale Study of Segregation at CdO/Ag(Au) Heterophase Interfaces

Published online by Cambridge University Press:  21 March 2011

Jason T. Sebastian
Affiliation:
Department of Materials Science and Engineering, Northwestern University2225 N. Campus Drive Evanston, IL 60208-3108, U.S.A.
Olof C. Hellman
Affiliation:
Department of Materials Science and Engineering, Northwestern University2225 N. Campus Drive Evanston, IL 60208-3108, U.S.A.
David N. Seidman
Affiliation:
Department of Materials Science and Engineering, Northwestern University2225 N. Campus Drive Evanston, IL 60208-3108, U.S.A.
Get access

Abstract

Three-dimensional atom-probe (3DAP) microscopy permits the atom-by-atom reconstruction of a small volume (typically 10 nm × 10 nm × 100 nm) of a material with respect to both the positions and chemical identities of individual atoms. It is, therefore, ideally suited for the study of solute segregation at internal heterophase interfaces. We present recent results of a 3DAP microscopy study of solute segregation at ceramic/metal (C/M) heterophase interfaces prepared by internal oxidation. In particular, results on the CdO/Ag(Au) (where Au is the segregating species) system are presented. In the 3DAP atomicreconstructions, the interfaces of nanometer-size CdO ceramic particles are delineated as Cd isoconcentration surfaces. The distribution of the segregating species as a function of distance to the isoconcentration surfaces is determined with the proximity histogram (or proxigram) method. Two interfaces are investigated in detail. The first shows no appreciable Au segregation, while the second exhibits segregation with a Gibbsianinterfacial excess of 1.65 nm-2 at 650°°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blavette, D., Deconihout, B., Bostel, A., Sarrau, J. M., Bouet, M. and Menand, A., Rev. Sci. Instrum., 64, 29112919 (1993).Google Scholar
2. Cerezo, A., Godfrey, T. J., Sijbrandij, S. J., Smith, G. D. W. and Warren, P. J., Rev. Sci. Instrum., 69, 4958 (1998).Google Scholar
3. Deconihout, B., Pareige, C., Blavette, D. and Menand, A., Micros. Microanal., 5, 3947 (1999).Google Scholar
4. Rüsing, J., Sebastian, J. T., Hellman, O. C. and Seidman, D. N., Micros. Microanal., 6, 445451 (2000).Google Scholar
5. Sebastian, J. T., Rüsing, J., Hellman, O. C., Seidman, D. N., Vriesendorp, W., Kooi, B. J. and Hosson, J. Th. M. De, to appear in Ultramicoscopy (2001).Google Scholar
6. Hellman, O. C., Vandenbroucke, J. A., Rüsing, J., Isheim, D. and Seidman, D. N. Micros. Microanal., 6, 437444(2000).Google Scholar
7. Shashkov, D. A., Muller, D. A. and Seidman, D. N., Acta Mater., 47, 39533963 (1999).Google Scholar
8. Chan, D. K., Seidman, D. N. and Merkle, K. L., Phys. Rev. Lett., 75, 11181121 (1995).Google Scholar
9. Hellman, O. C., Vandenbroucke, J. A., Rivage, J. Blatz du and Seidman, D. N., to appear in Ultramicroscopy (2001).Google Scholar
10. Shashkov, D. A., Chisholm, M. F. and Seidman, D. N., Acta Mater., 47, 39393951 (1999).Google Scholar
11. Jang, H., Shashkov, D. A., Chan, D. K., Seidman, D. N. and Merkle, K. L., Scripta Metall., 30, 663668 (1994)Google Scholar
12. Shashkov, D. A. and Seidman, D. N., Phys. Rev. Lett., 75, 268271 (1995).Google Scholar