Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T21:25:03.444Z Has data issue: false hasContentIssue false

Sub-Quarter Micron Metallization Using Ionized Metal Plasma Technology

Published online by Cambridge University Press:  10 February 2011

Fusen Chen
Affiliation:
Applied Materials, Inc. 3050 Bowers Avenue, Santa Clara, CA 95054
Zheng Xu
Affiliation:
Applied Materials, Inc. 3050 Bowers Avenue, Santa Clara, CA 95054
Ashok Sinha
Affiliation:
Applied Materials, Inc. 3050 Bowers Avenue, Santa Clara, CA 95054
Get access

Abstract

Ionized Metal Plasma (IMP) technology has been developed for liners and wetting layer deposition of sub-quarter-micron devices. Numerical modeling showed the unique advantages of IMP source over ECR source and long throw sputtering in enhancing bottom coverage. Ti and TiN bottom coverage up to 70% were demonstrated on 0.18μm contact holes. The deposition rate, uniformity, bottom coverage and film stress were optimized by tuning RF and DC powers, process pressure and bias power. In situ TiSi2 were formed in high aspect ratio contacts by depositing IMP Ti at an elevated temperature. The precisely controlled microstructure of IMP TiN film enabled low temperature aluminum planarization. The extendibility to 0.13μm technology node was demonstrated, and the application in copper metallization was revealed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Rossnagel, S.M., Mikalsen, D., Kinoshita, H., and Cuomo, J.J., J.Vac.Sci.Technol. A9 (1991) 261.Google Scholar
2) Motegi, N., Kashimoto, Y., Nagatani, K., Takahashi, S., Kondo, T., Mizusawa, Y., Nakayama, I., J.Vac.Sci.Tecnol. B13 (1995) 1906.Google Scholar
3) Bohr, M.T., Intl. Electron Devices Meeting Tech Digest, (1995) 241.Google Scholar
4) Rossnagel, S.M.: J.Vac.Sci. Technol., A7 (1989) 1025.Google Scholar
5) Thompson, M.W., Phil. Mag., 18 (1968) 377.10.1080/14786436808227358Google Scholar
6) Tsuge, H. and Esho, S., J.Appl.Phys., 52 (1981)4391.Google Scholar
7) Chang, B., Hui, S., Cha, C., Lee, S., Nam, M., Kim, E., Kieu, H., Ngan, K., Yao, G., Xu, Z., Chen, F. VMIC Proceedings, (1997) 389.Google Scholar
8) Dixit, G.A., Hsu, W.Y., Konecni, A.J., Krishnan, S., Luttmer, J.D., Havemann, R.H., Forster, J., Yao, G., Narasimhan, M., Xu, Z., Ramaswami, S., Chen, F.S., and Nulman, J., Intl. Electron Devices Meeting Tech Digest, (1996) 357.Google Scholar
9) Barth, H.J., Helneder, H., Piscevic, D., Schneegans, M., Birkmaier, G., Crowly, G., Kieu, H., Ramaswami, S., Richter, U. VMIC Proceedings, (1997) 225.Google Scholar
10) Bothra, S., Sengupta, S.S., Chang, B., Narasimhan, M., Ramaswami, S. VMIC Proceedings, (1997) 240.Google Scholar
11) Wang, Z., Catabay, W., Yuan, J., Ku, J., Krishna, N., Pavate, V., Sundrarajan, A., Saigal, D., Chang, B., Narasimhan, M., Egermeier, J., Ramaswami, S. VMIC Proceedings, (1997) 258.Google Scholar
12) Hosoda, T., Fukumoto, Y., Inagaki, S., Ygi, H. VMIC Proceedings, (1997) 399.Google Scholar