Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-18T03:17:05.498Z Has data issue: false hasContentIssue false

Subwavelength Localization of Optical Modes in Fractals

Published online by Cambridge University Press:  15 February 2011

Vladimir Shalaev
Affiliation:
Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003
R. Botet
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud, Centre d'Orsay, 91405 Orsay CEDEX, France
M. Moskovits
Affiliation:
Ontario Laser and Lightwave Research Centre, and Department of Chemistry, University of Toronto, M5S 1A1, Canada
Get access

Abstract

Resonant optical excitation of fractal clusters generates dipolar eigenmodes which are extremely localized within areas much smaller than the wavelength. The localization occurs due to the fractal morphology and accounts for the very high local fields leading to the huge enhancement of various optical effects. In particular, Rayleigh and Raman light scattering and, especially, nonlinear optical processes, such as 2-photon photoemission and degenerate four-wave mixing, are strongly enhanced in fractal clusters. The spatial distribution of the modes shows the frequency and polarization selectivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Shalaev, V.M., Stockman, M.I., Zh. Eksp. Teor. Fiz. 92, 509 (1987)[Sov.Phys.JETP 65, 287 (1987); Z.Phys.D-Atoms, Molecules and Clusters 10, 71 (1988). A.V.Butenko, V.M.Shalaev, M.I.Stockman, Zh.Eksp.Teor.Fiz. 94, 107 (1988) [Sov.Phys.JETP 67, 60 (1988)]; Z.Phys.D-Atoms, Molecules and Clusters 10, 81 (1988).Google Scholar
[2] Markel, V.A., Muratov, L.S., Stockman, M.I., Zh. Eksp. Teor. Fiz. 98, 819 (1990) [Soy. Phys. JETP 71, 455 (1990)]; V.A.Markel, L.S.Muratov, M.I.Stockman, & T.F.George, Phys. Rev. B 43, 8183 (1991).Google Scholar
[3] Claro, F., Fuchs, R., Phys.Rev.B 44, 4109 (1991); K.Ghosh, R.Fuchs, Phys.Rev.B 44, 7330 (1991); I.H. Zabel & D.Stroud, Phys.Rev.B 46, 8132 (1992).Google Scholar
[4] Stockman, M.I., George, T.F., & Shalaev, V.M., Phys. Rev. B 44, 115 (1991); V.M.Shalaev, R.Botet, A.V.Butenko, Phys.Rev. B 48, 6662 (1993).Google Scholar
[5] Shalaev, V.M., Botet, R., & Jullien, R., Phys. Rev. B 44, 12216 (1991); 45, 7592(E) (1992); M.I.Stockman, V.M.Shalaev, M.Moskovits, R.Botet, & T.F.George, Phys. Rev. B 46, 2821 (1992); V.M.Shalaev, M.I.Stockman, & R.Botet, Physica A 185, 181 (1992).Google Scholar
[6] Rautian, S. G., Safonov, V. P., Chubakov, P. A., Shalaev, V. M., Stockman, M. I., Pis'ma Zh. Eksp. Teor. Fiz. 47, 243 (1988) [JETP Lett. 47, 243 (1988)]; A. V. Butenko, P. A. Chubakov, Yu. E. Danilova, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, M. I. Stockman, Z. Phys. D Atoms, Molecules and Clusters 17, 283 (1990).Google Scholar
[7] Shalaev, V.M., Moskovits, M., Golubentsev, A.A., & John, S., Physica A 191, 352 (1992).Google Scholar
[8] Tsai, D. P., Kovacs, J., Moskovits, Martin, Shalaev, Vladimir, Suh, J. S., and Botet, R., Phys. Rev. Lett., submitted.Google Scholar
[9] Betzig, E. & Trautman, J.K., Science 257, 189 (1992).Google Scholar
[10] Jullien, R. & Botet, R., Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).Google Scholar