Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T05:36:03.311Z Has data issue: false hasContentIssue false

Surface Chemistry on Microclusters: Recent Results from Silicon and Germanium Cluster Beams

Published online by Cambridge University Press:  25 February 2011

J. M. Alford
Affiliation:
Rice Quantum Institute and Department of Chemistry Rice University, Houston, Texas 77251
R. E. Smalley
Affiliation:
Rice Quantum Institute and Department of Chemistry Rice University, Houston, Texas 77251
Get access

Abstract

Supersonic cluster beam techniques have recently produced some fascinating new information as to the surface chemistry and physics of small (2–100 atom) clusters of various semiconductors. For example, it appears that silicon clusters exhibit a remarkably pronounced alternation in reactivity as a function of cluster size. For ammonia chemisorption certain clusters such as Si33+, Si39+, and Si45+ have been found to be almost completely inert, while neighboring clusters such as Si36 and Si45+ chemisorb ammonia readily. Such sharply patterned reactivity results may provide significant clues as to the detailed nature of semiconductor surface restructuring and the consequent effects of this restructuring upon the surface chemistry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Alford, J. M., Williams, P. E., Trevor, D. J., and Smalley, R. E., Int. J. Mass. Spectrom. Ion Phys. 72, 33 (1986).Google Scholar
[2] Alford, J. M., Weiss, F. D., Laaksonen, R. T., and Smalley, R. E., J. Phys. Chem. 90, 4480 (1986).Google Scholar
[3] Elkind, J. L., Weiss, F. D., Alford, J. M., Laaksonen, R. T., and Smalley, R. E., J. Chem. Phys. 88, 5215 (1988).Google Scholar
[4] O'Brien, S. C., Liu, Y., Zhang, Q., Heath, J. R., Tittle, F. K., Curl, R. F., and Smalley, R. E., J. Chem. Phys. 84, 4074 (1986).Google Scholar
[5] Brucat, P. J., Pettiette, C. L., Zheng, L. S., Craycraft, M. J., and Smalley, R. E., J. Chem. Phys. 85, 4747 (1986).Google Scholar
[6] Taylor, K. J., Pettiette, C. L., Craycraft, M. J., Chesnovsky, O., and Smalley, R. E., Chem. Phys. Lett. 152, 347 (1988).CrossRefGoogle Scholar
[7] Curl, R. F. and Smalley, R. E., Science 242, 1017 (1988).CrossRefGoogle Scholar
[8] Bloomfield, L. A., Freeman, R. R., and Brown, W. L., Phys. Rev. Lett. 54 2246 (1985).Google Scholar
[9] Zhang, Q. L., Liu, Y., Curl, R. F., Tittle, F. K., and Smalley, R. E., J. Chem. Phys. 88, 1670 (1988).Google Scholar
[10] Marshall, A. G., Wang, T. C. L., and Ricca, T. L., J. Am. Chem. Soc. 107, 7893 (1985).Google Scholar
[11] Elkind, J. L., Alford, J. M., Weiss, F. D., Laaksonen, R. T., and Smalley, R. E., J. Chem. Phys. 87, 2397 (1987).Google Scholar
[12] Raghavachari, K., J. Chem. Phys. 84, 5672 (1986).Google Scholar
[13] Raghavachari, K., and Rohlfing, C. M., J. Chem. Phys. 89, 2219 (1988).Google Scholar
[14] Ballone, P., Andreoni, W., Car, R., and Parrinello, M., Phys. Rev. Lett. 60, 271 (1988).Google Scholar
[15] Tomanek, D. and Schluter, M. A., Phys. Rev. B 36, 1208 (1987).Google Scholar
[16] Jelski, D. A., Wu, Z. C., and George, T. F., Chem. Phys. Lett. 150, 447 (1988).Google Scholar
[17] Chelikowsky, J. R., Phys. Rev. Lett. 60, 2669 (1988).Google Scholar
[18] Phillips, J. C., J. Chem. Phys. 88, 2090 (1988).Google Scholar