Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T17:39:08.903Z Has data issue: false hasContentIssue false

Surface Stress Effect on the Elastic Moduli of Superlattice Thin Films

Published online by Cambridge University Press:  28 February 2011

R. C. Cammarata
Affiliation:
Department of Materials Science and Engineering
K. Sieradzki
Affiliation:
Department of Materials Science and Engineering
F. H. Streitz
Affiliation:
Department of Physics and Astronomy The Johns Hopkins University Baltimore, MD 21218
Get access

Abstract

A thermodynamic model is presented which predicts a significant sample size effect on the elastic moduli of superlattice thin films possessing small bilayer repeat lengths. Owing to the presence of incoherent (incommensurate) interfacial stresses, biaxial in-plane strains are created which are approximately inversely proportional to the bilayer repeat length Λ. When Λ is of the order of 1 nm, these strains can be of the order of 1%, inducing nonlinear elastic behavior. This model is able to explain in a quantitative way the existence of a “supermodulus” effect in certain metallic superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Clapp, P.C., in Modulated Structure Materials, NATO ASI Series, Applied Sciences, ed. Tsakalakos, T., Nijhoff, Martinus, Drodecht, p. 465 (1985).Google Scholar
2Schuller, I.K., IEEE Ultrason. Symp. 1985, 1093 (1985).Google Scholar
3Tsakalakos, T. and Jankowski, A.F., Ann. Rev. Mater. Sci. 16, 293 (1986).Google Scholar
4Cammarata, R.C., Scripta Metall. 20, 479 (1986).Google Scholar
5Cahn, R.W., Nature 324, 108 (1986).Google Scholar
6Yang, W.M.C., Tsakalakos, T., and Hilliard, J.E., J. Appl. Phys. 48, 876 (1977).Google Scholar
7Kueny, A., Grimsditch, M., Miyano, K., Banerjee, I., Falco, C.M., and Schuller, I.K., Phys. Rev. Lett. 48, 166 (1982).Google Scholar
8Clemens, B.M. and Eesley, G.L., Phys. Rev. Lett. 61, 2356 (1988).Google Scholar
9Clemens, B.M. and Eesley, G.L., Proc. Mat. Res. Soc. 130, 307 (1989).Google Scholar
10Henein, G., Ph.D. Thesis, Northwestern University (1979).Google Scholar
11Wu, T.-B., J. Appl. Phys. 53, 5265 (1982).Google Scholar
12Pickett, W.E., J. Phys. F: Met. Phys. 12, 2195 (1982).Google Scholar
13Jankowski, A.F. and Tsakalakos, T., J. Phys. F: Met. Phys. 15, 1279 (1985).Google Scholar
14Banerjea, A. and Smith, J.R., Phys. Rev. B35, 5413 (1987).Google Scholar
15Dodson, B.W., Phys. Rev. B37, 772 (1988).Google Scholar
16Clemens, B.M., personal communication.Google Scholar
17Green, K.A., M.S. Thesis, Brown University (1990).Google Scholar
18Cammarata, R.C. and Sieradzki, K., Phys. Rev. Lett. 62, 2005 (1989).Google Scholar
19Needs, R.J. and Godfrey, M.J., Physica Scripta T19, 391 (1987).Google Scholar
20Ackland, G.J. and Finnis, M.I., Philos. Mag. 54, 301 (1986).Google Scholar
21Mays, C.W., Vermaak, J.S., and Kuhlmann-Wilsdorf, D., Surf. Sci. 12, 134 (1968).Google Scholar
22Dregia, S.A., Ph.D. Thesis, Carnegie-Mellon University (1989).Google Scholar
23 In reference 18, the factor of 2 in the first term on the left hand side was incorrectly omitted.Google Scholar
24Dodson, B.W., personal communication.Google Scholar
25Wolf, D. and Lutsko, J.F., Phys. Rev. Lett. 60, 1170 (1988).Google Scholar