Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-03T22:30:22.881Z Has data issue: false hasContentIssue false

A Survey of Defects in Strained Si Layers

Published online by Cambridge University Press:  17 March 2011

S. W. Bedell
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
H. Chen
Affiliation:
IBM Microelectronics Division, Hopewell Junction, NY 12533
D. K. Sadana
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
K. Fogel
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
A. Domenicucci
Affiliation:
IBM Microelectronics Division, Hopewell Junction, NY 12533
Get access

Abstract

A new method for highlighting defects in thin Si/SiGe layers is used to investigate the densities of various types of defects present in strained Si layers grown on relaxed SiGe layers. Defect densities were measured in strained Si layers formed on graded SiGe buffer layers (bulk), as well as silicon germanium-on-insulator substrates (SGOI), from both external and internal sources. The result of this investigation indicates that in addition to threading dislocations (TDs) and dislocation pile-ups, planar defects, i.e., stacking faults, are present in all but one of the materials studied. Due to the larger crystalline area affected by these planar defects, citation of only TD density as an indication of material quality is inadequate. A better measure of crystalline quality should include the density of TDs, pile-up clusters and planar defects (stacking faults) as well as some indication of the length distribution of the pile-ups and stacking faults.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Welser, J., Hoyt, J. A. and Gibbons, J. F., IEEE Trans. Electron. Dev., 40, (1993) 2101.Google Scholar
2. Lee, B. H., Mocuta, A., Bedell, S., Chen, H., Sadana, D., Rim, K., O'Neil, P., Mo, R., Chan, K., Cabral, C., Lavoie, C., Mocuta, D., Chakravarti, A., Ryan, D., Mezzapelle, J., Jamin, F., Sendelbach, M., Kermel, H., Gribelyuk, M., Domenicucci, A., Jenkins, K. A., Narasimha, S., Ku, S. H., Ieong, M., Yang, I. Y., Leobandung, E., Agnello, P., Haench, W. and Welser, J., Tech. Dig. International Electron Devices Meeting, (2002) p946.Google Scholar
3. Rim, K., Koester, S., Hargrove, M., Chu, J., Mooney, P. M., Ott, J., Kanarsky, T., Ronsheim, P., Ieong, M., Grill, A., Wong, H.S.P., Dig. Tech. Papers. 2001 Symposium on VLSI Technology, (2001) p59.Google Scholar
4. Ghani, T., Armstrong, M., Auth, C., Bost, M., Charvat, P., Glass, G., Hoffman, T., Johnson, K., Kenyon, C., Klaus, J., McIntyre, B., Mistry, K., Murthy, A., Sandford, J., Silberstein, M., Sivakumar, S., Smith, P., Zawadzki, K., Thompson, S. and Bohr, M., Tech. Dig. International Electron Devices Meeting, Dec. 2003.Google Scholar
5. Fitzgerald, E. A., Xie, Y. H., Green, M. L., Brasen, D., Kortan, A. R., Michel, J., Mii, Y. J. and Weir, B. E., Appl. Phys. Lett., 59, (1991) 811.Google Scholar
6. Trinkaus, H., Hollander, B., Rongen, St., Mantl, S., Herzog, H. -J., Kuchenbecker, J. and Hackbarth, T., Appl. Phys. Lett., 76, (2000) 3552.Google Scholar
7. Huang, L. J., Chu, J. O., Goma, S., D'Emic, C. P., Koester, S. J., Canaperi, D. F., Mooney, P. M., Cordes, S. A., Speidell, J. L., Anderson, R. M. and Wong, H.S.P., Tech. Papers. 2001 Symposium on VLSI Technology, (2001) p57.Google Scholar
8. Mizuno, T., Sugiyama, N., Tezuka, T. and Takagi, S., Appl. Phys. Lett., 80, (2002) 601.Google Scholar
9. Tezuka, T., Sugiyama, N. and Takagi, S., Appl. Phys. Lett., 79, (2001) 1798.Google Scholar
10. Yang, J., Neudeck, G. W., and Denton, J. P., Appl. Phys. Lett., 77, (2000) 4034.Google Scholar
11. Bedell, S. W., Sadana, D. K., Fogel, K., Chen, H. and Domenicucci, A., Electrochemical and Solid State Letters, 7, (2004) G105.Google Scholar
12. d'Aragona, F. Secco, J. Electrochem. Soc., 119, (1972) 948.Google Scholar
13. Shimmel, D. G., J. Electrochem. Soc., 126, (1979) 479.Google Scholar
14. Chang, J., Electrochem Soc., 138, (1991) 202.Google Scholar