Skip to main content Accessibility help

Swift Heavy Ion Beam-Based Nanopatterning Using Self-Assembled Masks

  • Jens Jensen (a1), Ruy Sanz (a2), Marek Skupinski (a3), Manuel Hernandez-Vélez (a4), Göran Possnert (a5) and Klas Hjort (a6)...


Swift heavy ion beam-based lithography using masks of self-assembled materials has been applied for transferring well-ordered micro- and nanopatterns to rutile TiO2 single crystals. As the induced damage has a high etching selectivity the patterns can be developed in HF with very high contrast. Here we present resulting patterns when using a mask of self-ordered silica spheres. Since the obtained structures are replicas of the mass distribution of the applied mask, the shape and size of resulting structures depend on the geometric configuration of the silica sphere layers. In addition, the resulting pattern can be tuned by varying the applied ion energy and fluence. Direct modifications of the optical properties of TiO2 in a well-defined pattern are also presented.



Hide All
1. Nalwa, H.S., Handbook of Nanostructures Materials and Nanotechnology, (Elsevier, Amsterdam 1999).
2. Bhushan, B. (editor) Handbook of Nanotechnology, (Springer Verlag 2004).
3. Spohr, R., Ion Tracks and Microtechnology, Principles and Applications, (Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig, 1990).
4. Razpet, A., Johansson, A., Possnert, G., Skupinski, M., Hjort, K., Hallén, A., J. Appl. Phys. 97, 44310 (2005).
5. Sanz, R., Johansson, A., Skupinski, M., Jensen, J., Possnert, G., Boman, M., Vazquez, M., Hjort, K., Nano Letter 6, 1065 (2006).
6. Skupinski, M., Jensen, J., Johansson, A., Razpet, A., Possnert, G., Boman, M., Hjort, K., submitted to J. Vac. Science and Tech. B (2006).
7. Burmeister, F., Badowsky, W., Braun, T., Wieprich, S., Boneberg, J., Leiderer, P., Appl. Surf. Sci. 144/145, 461 (1999).
8. Dillen, T. van, Blaaderen, A. van, Polman, A., Mater. Today 7/8, 40 (2004), and references therein.
9. Strohhöfer, C., Hoogenboom, J.P., Blaaderen, A. van, Polman, A., Adv. Mater. 14, 1815 (2002).
10. Skupinski, M., Sanz, R., J. Jensen, Nucl. Instrum. Meth. B, in press (2007).
11. Diebold, U., Surf. Sci. Rep. 48, 53229 (2003).
12. Rajeshwar, K., Tacconi, N.R. de, Chenthamarakshan, C. R., Chem. Mater. 13, 2765 (2001).
13. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A., Nano Lett. 5, 191 (2005).
14. Nomura, K., Nakanishi, T., Nagasawa, Y., Ohki, Y., Awazu, K., Fujimaki, M., Kobayashi, N., Ishii, S., Shima, K., Phys. Rev. B 68, 064106 (2003).
15. Awazu, K., Fujimaki, M., Ohki, Y., Komatsubara, T., Radiation Measurements 40, 722 (2005).
16. Micheletto, R., Fukuda, H., Ohtsu, M., Langmuir 11, 3333 (1995).
18. Jensen, J., Razpet, A., Skupinski, M., Possnert, G., Nucl. Instrum. Meth. B 243, 119 (2006), and references therein.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed