Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T15:57:31.267Z Has data issue: false hasContentIssue false

Synthesis and Characterization of NaNbO3 Mesostructure by a Microwave-Assisted Hydrothermal Method

Published online by Cambridge University Press:  18 September 2014

Guilhermina F. Teixeira
Affiliation:
Chemistry Institute - UNESP, 55, Professor Francisco Degni Street, Araraquara, Brazil
Maria Ap. Zaghete
Affiliation:
Chemistry Institute - UNESP, 55, Professor Francisco Degni Street, Araraquara, Brazil
José A. Varela
Affiliation:
Chemistry Institute - UNESP, 55, Professor Francisco Degni Street, Araraquara, Brazil
Elson Longo
Affiliation:
Chemistry Institute - UNESP, 55, Professor Francisco Degni Street, Araraquara, Brazil
Get access

Abstract

In the present work, we report the synthesis and characterization of NaNbO3 particles obtained by microwave-assisted hydrothermal method from Nb2O5 and NaOH. The synthesis was made at different periods at 180 °C and 300W. The crystallization of NaNbO3 structures produced Na2Nb2O6.H2O in the intermediate phase with fiber-like morphology, and this is associated with the synthesis time. Pure orthorhombic NaNbO3 with cube-like morphology originates after synthesizing for 240 minutes. To verify the remnant polarization of particles, films were obtained by electrophoresis process and sintered at 800°C for 10 minutes in a microwave furnace. The films characterization indicated that films of niobate with fiber-like morphology present remaining polarization, and the morphology of cubes did not show remaining polarization. Considering these results, it can be concluded that the morphology implemented ferroelectric property of NaNbO3.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Oliveira, C.A., Longo, E., Varela, J.A., Zaghete, M.A., Ceram. Int. 40 1717 (2014)CrossRefGoogle Scholar
Lizandara-Pueyo, C., Siroky, S., Wagner, M. R., Hoffmann, A., Reparaz, J. S., Lehmann, M., Polarz, S., Adv. Funct. Mater. 21 295 (2011)CrossRefGoogle Scholar
Teixeira, G.F., Gasparotto, G., Paris, E.C., Zaghete, M.A., Longo, E., Varela, J.A., J. Lumin. 132 46 (2012)CrossRefGoogle Scholar
Boukriba, M., Sediri, F., Gharbi, N., Mater. Res. Bull. 48 574 (2013)CrossRefGoogle Scholar
Ke, T.-Y., Chen, H.-A., Sheu, H.-S., Yeh, J.-W., Li, H.-N., Lee, C.-Y., Chiu, H.-T., J. Phys. Chem. C 112 8827 (2008)CrossRefGoogle Scholar
Song, H., Ma, W., Ceram. Int. 37 877 (2011)CrossRefGoogle Scholar
Paula, A.J., Zaghete, M.A., Longo, E., Varela, J.A., Eur. J. Inorg. Chem. 8 1300 (2008)CrossRefGoogle Scholar
Shiratori, Y., Magrez, A., Fischer, W., Pithan, C., Waser, R., J. Phys. Chem. C 111 18493 (2007)CrossRefGoogle Scholar
Zielinska, B., Borowiak-Palen, E., Kalenczuk, R. J., J. Phys. Chem. Solids 72 117 (2011)CrossRefGoogle Scholar
Yu, A., Q, J., Liu, L., Pan, H., Zhou, X., Appl. Surf. Sci. 258 3490 (2012)CrossRefGoogle Scholar
Zhu, H., Zheng, Z., Gao, X., Huang, Y., Yan, Z., Zou, J., Yin, H., Zou, Q., Kable, S. H., Zhao, J., Xi, Y., Martens, W. N., Frost, R. L., J. Am. Chem. Soc. 128 2373 (2006)CrossRefGoogle Scholar
Paula, A.J., Parra, R., Zaghete, M.A., J.A. Varela, Mater. Lett. 62 2581 (2008)CrossRefGoogle Scholar