Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T23:39:13.011Z Has data issue: false hasContentIssue false

Synthesis and Orientation of Poly(Dialkylstannane)s

Published online by Cambridge University Press:  17 March 2011

Fabien Choffat
Affiliation:
Department of Materials, ETH Zürich, Zürich, CH-8093, Switzerland
Sara Fornera
Affiliation:
Department of Materials, ETH Zürich, Zürich, CH-8093, Switzerland
Paul Smith
Affiliation:
Department of Materials, ETH Zürich, Zürich, CH-8093, Switzerland
Walter Caseri
Affiliation:
Department of Materials, ETH Zürich, Zürich, CH-8093, Switzerland
Get access

Abstract

Polystannanes, i.e. organometallic polymers of the chemical formula (SnR2)n, are relatively little explored, although they belong to the rare examples of polymers which are characterized by a backbone of metal atoms which are linked by covalent bonds. We developed a new synthetic route which yields pure linear poly(dibutylstannane) [Sn(Bu)2]n by polymerization of dibutylstannane (dibutyltin dihydride) with the catalyst [RhCl(PPh3)3]. Here, we report that the conversion and the reaction rate of dibutylstannane depends crucially on the temperature and [RhCl(PPh3)3] is also suited for the polymerization of dioctylstannane and didodecylstannane. The polymers thus obtained were characterized by 1H, 13C and 119Sn NMR spectroscopy: Orientation of all polystannanes was achieved by tensile drawing. The orientation was examined by UV-vis spectroscopy with polarized light and X-ray diffraction. Remarkably, the orientation of the backbone depended on the length of the alkyl groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Löwig, C. Mitt. Naturforsch. Ges. Zürich 2, 556 (1852).Google Scholar
2. Cahours, A. Ann. Chem. Pharm. (Liebig's Ann.) 114, 227 (1860).Google Scholar
3. Cahours, A. Ann. Chim. Phys., Sér. 3 58, 5 (1860).Google Scholar
4. Harada, T. Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 35, 290 (1939).Google Scholar
5. Mustafa, A.; Achilleos, M.; Ruiz-Iban, J.; Davies, J.; Benfield, R. E.; Jones, R. G.; Grandjean, D.; Holder, S. J. React. Funct. Polym. 66, 123 (2006).Google Scholar
6. Zou, W. K.; Yang, N. L. Polym. Prep. (Am. Chem. Soc. Div. Polym. Chem.) 33, 188 (1992).Google Scholar
7. Okano, M.; Matsumoto, N.; Arakawa, M.; Tsuruta, T.; Hamano, H. Chem. Commun. 1799 (1998).Google Scholar
8. Okano, M.; Watanabe, K. Electrochem. Commun. 2, 471 (2000).Google Scholar
9. Choffat, F.; Smith, P.; Caseri, W. J. Mater. Chem. 15, 1789 (2005).Google Scholar
10. Imori, T.; Lu, V.; Cai, H.; Tilley, T. D. J. Am. Chem. Soc. 117, 9931 (1995).Google Scholar
11. Imori, T.; Tilley, T. D. J. Chem. Soc., Chem. Commun. 1607 (1993).Google Scholar
12. de Haas, M. P.; Choffat, F.; Caseri, W.; Smith, P.; Warman, J. M. Adv. Mater. 18, 44 (2006).Google Scholar
13. Möller, M.; Frey, H.; Sheiko, S. Colloid Polym. Sci. 271, 554 (1993).Google Scholar
14. Finholt, A. E.; Bond, A. C.; Schlesinger, H. I. J. Am. Chem. Soc. 69, 1199 (1947).Google Scholar
15. Pope, W. J.; Peachey, S. J. Proc. Chem. Soc. 19, 290 (1903).Google Scholar
16. Kozeschkow, K. A. Ber. Deutsch. Chem. Ges. 62, 996 (1929).Google Scholar