Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-16T14:25:04.687Z Has data issue: false hasContentIssue false

Synthesis, Characterization, and Electrochemical Performances of Substituted Layered Transition Metal Oxides. LiM1-yM'yO2. (M=Ni and Co. M'= B and AI)

Published online by Cambridge University Press:  15 February 2011

G. A. Nazri
Affiliation:
Physics and Physical Chemistry Department, General Motors Research and Development Center, RCEL, Warren, MI 48090–9055
A. Rougier
Affiliation:
Physics and Physical Chemistry Department, General Motors Research and Development Center, RCEL, Warren, MI 48090–9055
K. F. Kia
Affiliation:
Physics and Physical Chemistry Department, General Motors Research and Development Center, RCEL, Warren, MI 48090–9055
Get access

Abstract

The synthesis, characterization and electrochemical performances of lithiated nickelate and cobaltate doped with Al and B are reported. The synthesis involves solid state reaction between lithium hydroxide, nickel or cobalt oxides and several sources of aluminum and boron. Careful selection of precursors and heat treatment conditions are required to prepare single phase impurity free samples. X-ray diffraction and Rietveld refinement analysis indicate that the layered structure is preserved upon considerable substitution of aluminum and boron. X-ray diffraction line intensities and positions remained in good agreement with the space group. The IR spectra of the samples indicate formation of compressed CoO6 and NiO6, and elongated LiO6 octahedra. The IR vibrational mode of the LiO6 remains in the 200–300 cm-1 and the vibrational modes of the MO6 expand over 400–650 cm-1. Results of long charge-discharge cycling of the samples as cathode materials in lithium cells showed long cycle life. The capacity of the electrodes upon substitution were reduced almost linearly as the concentration of substitution was increased. The solubility limit for the formation of solid solutions upon substitution of Al and B in LiNiO2 and LiCoO2 was found to be around 25%. Specific capacities of the samples were between 120 to 160 mAh/g depending on the amount of substitution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. Delmas, C., Braconnier, J., Hagenmuller, P., Mat. Res. Bull. 17, 117, 1982.Google Scholar
2. Broussley, M., Perton, F., Biensan, P., Bodet, J.M., Labat, J., Lecerf, A., Delmas, C., Rougier, A., Peres, J.P., J. Power Sources 54. 109 (1995).Google Scholar
3. Rougier, A., Gravereau, P. and Delmas, C., J. Electrochem. Soc. 143, 1168 (1996).Google Scholar
4. Thomas, M.G.S.R., Bruce, P.G., Goodenough, J.B., Solid State Ionics 17, 13 (1985).Google Scholar
5. Gummow, R.J., Thackeray, M.M., David, W.I.F., Hull, S., Mat. Res. Bull. 27, 327 (1992).Google Scholar
6. Antolini, E. and Ferretti, M., J. Solid State Chem. 117, 1, (1995).Google Scholar
7. Reimers, J.N. and Dalin, J.R., J. Electrochem. Soc. 139, 2091 (1993).Google Scholar
8. Dahn, J.R., Von Sacken, U., Michal, C.A., Solid State Ionics 44, 87 (1990).Google Scholar
9. Ohziiku, T., Ueda, U., Nagayama, M., Electrochim. Acta 38, 1159 (1993).Google Scholar
10. Olmiku, T. and Ueda, A., J. Electrochem. Soc., 141, 2972 (1994).Google Scholar
11. Nagaura, T. and Tozawa, K., Progress in Batteries & Solar Cells 9, 209 (1990).Google Scholar
12. Nagaura, T., Progress in Batteries & Materials 10, 218 (1991).Google Scholar
13. Goodenough, J.B., Wickham, D.G., Croft, W.J., J. Phys. Chem. of Solids 5, 107 (1958).Google Scholar
14. Kemp, J.P., Cox, P.A., Hodby, J.W., J. Phys. Condens. Matter 2, 6699 (1990).Google Scholar
15. Stoyanova, R., Zhecheva, E., Friebel, C., J. Phys. Chem. Solids 54, 9 (1993).Google Scholar
16. Taguchi, H. and Takahashi, Y., J. Mater. Sci. 19, 3347 (1984).Google Scholar
17. Dutta, G., Manthiram, A., Goodenough, G.B., Grenier, J-C., J. Solid State Chem. 96, 123 (1992), andGoogle Scholar
Rougier, A., Delmas, C., Chouteau, G., J. Phys. and Chem. of Solids 57, 1101 (1996).Google Scholar
18. Mosserand, E., Pearson, W.B., Acta Cryst. 12, 1012 (1959).Google Scholar
19. Rouxel, J., in Intercalated Layered Materials, edited by Levy, F. (D. Reidel, Dordrecht, 1979), p. 201.Google Scholar
20. Rouxel, J. and Monceau, P., J. Phys. C 11, 4117 (1978).Google Scholar
21. Schollhorn, R., in Physics of Intercalation Compounds, edited by Pietronero, L. and Tosatti, E., (Springer Verlag, Berlin/NY, 1981), p. 33.Google Scholar
22. Rouxel, J. and Toumoux, M., Solid State Ionics 84, 141 (1996).Google Scholar
23. Oku, M., J. Solid State Chem. 23, 177 (1978).Google Scholar
24. Galakhov, V.R., Kurmaev, E.Z., Uhlenbrock, St., Neumann, M., Kellerman, D.G., Gorshkov, M., Solid State Commun. 99, 221 (1996).Google Scholar
25. Zhecheva, E., Stoyanova, R., Gorova, M., Alcantara, R., Morales, J., Tirado, J.L., Chem. Mater. 8, 1429 (1996).Google Scholar
26. Moore, R.K. and White, W.B.. J. Am. Ceramic Soc. 53. 679 (1970).Google Scholar
27. Inaba, M., Todzuka, Y., Yoshida, H., Grincourt, Y., Tasaka, A., Tomida, Y., Ogumi, Z., Chem. Lett. 889 (1995).Google Scholar
28. Chang, I.F. and Mitra, S.S., Phys. Rev. 172, 924 (1968).Google Scholar
29. Tarte, P. and Preudhomme, J., Spectrochim. Acta 26A, 747 (1970).Google Scholar
30. Tarte, P., Spectrochim. Acta 20, 238 (1964).Google Scholar
31. Tarte, P., J. Inorg. Nucl. Chem. 29, 915 (1967).Google Scholar
32. Hope, P. and Schepers, B., Z. Anorg. Allgem. Chem. 295. 233 (1958).Google Scholar
33. Shannon, R.D. and Prewitt, C.T., Acta Cryst. B, 25, 925 (1989).Google Scholar
34. Peres, J.P., Delmas, C., Rougier, A., Broussely, M., Perton, F., Biensan, P., Willmann, P., J. Phys. Chem. of Solids 57, 1057 (1996).Google Scholar