Hostname: page-component-cb9f654ff-nr592 Total loading time: 0 Render date: 2025-08-04T20:06:24.410Z Has data issue: false hasContentIssue false

synthesis of III-N x-V 1-x Thin Films by N Ion Implantation

Published online by Cambridge University Press:  17 March 2011

K. M. Yu
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
W. Walukiewicz
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
W. Shan
Affiliation:
OptiWork, Inc. Fremont, CA 94538
J. Wu
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
J. W. Beeman
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
J. W. Ager III
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
E. E. Haller
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
M.C. Ridgway
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, Australia
Get access

Abstract

Dilute III-N x-V 1-x alloys were successfully synthesized by nitrogen implantation inGaAs and InP. The fundamental band gap energy for the ion beam synthesized III-N x-V 1-x alloys was found to decrease with increasing N implantation dosein a manner similar to that commonly observed in epitaxially grown GaN xAs 1-x and InN xP 1-xthin films. The fraction of N occupying anion sites ("active" N) inthe GaN xAs 1-x layers formed by N implantation was thermally unstable anddecreased with increasing annealing temperature. In contrast, thermallystable InN xP 1-x alloys with N mole fraction as high as 0.012 were synthesized by Nimplantation in InP. Moreover, the N activation efficiency in InP was atleast a factor of two higher than in GaAs under similar processingconditions. The low N activation efficiency (<20%) in GaAs can beimproved by co-implanting Ga and N in GaAs.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Weyers, M., Sato, M., Ando, H., Jpn. J. Appl. Phys. 31, L853 (1992).Google Scholar
2. Baillargeon, J. N., Cheng, K. Y., Hofler, G. F., Pearah, P. J. and Hsieh, K. C., Appl. Phys. Lett. 60, 2540 (1992).Google Scholar
3. Kondow, M., Uomi, K., Hosomi, K. and Mozume, T., Jpn. J. Appl. Phys. 33 L1056 (1994).Google Scholar
4. Bi, W. G., and Tu, C. W., J. AppI. Phys. 80, 1934 (1996).Google Scholar
5. Uesugi, K., Marooka, N. and Suemune, I., Appl. Phys. Lett. 74, 1254 (1999).Google Scholar
6. Shan, W., Yu, K. M., Walukiewicz, W., Ager, J. W., Haller, E. E. and Ridgway, M. C., Appl. Phys. Lett. 75, 1410 (1999).Google Scholar
7. Bi, W. G. and Tu, C. W., Appl. Phys. Lett. 69, 3710 (1996).Google Scholar
8. Xin, X. P. and Tu, C. W., Appl. Phys. Lett. 72, 2442 (1998).Google Scholar
9. Kondow, M., Kitatani, T., Nakatsuka, S., Larson, M. C., Nakahara, K., Yazawa, Y., Okai, M. and Uomi, K, IEEE J. Sel. Topics in Quantem Elect. 3, 719 (1997).Google Scholar
10. Kondow, M., Kitatani, T., Larson, M. C., Nakahara, K., Uomi, K. and Inoue, H., J. Crystal Growth 188, 255 (1998).Google Scholar
11. Friedman, D. J., Geisz, J. F., Kurtz, S. R., Myers, D. and Olson, J. M, J. Cryst. Growth 195, 409 (1998).Google Scholar
12. Kurtz, S. R., Allerman, A.A., Jones, E.D., Gee, J.M., Banas, J.J., and Hammons, B.E., Appl. Phys. Lett. 74, 729(1999).Google Scholar
13. Neugebauer, J. and Walle, C. G. Van, Phys. Rev. B51, 10568 (1995).Google Scholar
14. Wang, L. –W., Bellaiche, L., Wei, S. –H., and Zunger, A., Phys. Rev. Lett. 80, 4725 (1998).Google Scholar
15. Jones, E. D., Modine, N. A., Allerman, A. A., Kurtz, S. R., Wright, A. F., Tozer, S. T., and Wei, X., Phys. Rev. B60, 4430 (1999).Google Scholar
16. Lindsay, A. and O'Reilly, E. P., Solid State Commun. 112, 443 (1999).Google Scholar
17. Shan, W., Walukiewicz, W., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett. 82, 1221(1999).Google Scholar
18. Walukiewicz, W., Shan, W., Ager, J. W. III, Chamberlin, D. R., Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., in Photovoltaics for the 21st Century, edited by Kapur, V. K., McDonnell, R. D., Carlson, D., Ceasar, G. P., Rohatgi, A. (Electrochemical Society Press, Pennington, 1999) p. 190.Google Scholar
19. Shan, W., Yu, K. M., Walukiewicz, W., Xin, X. P., and Tu, C. W., unpublished data (2000).Google Scholar