Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-13T21:32:08.623Z Has data issue: false hasContentIssue false

Synthesis of Nanocarbon Materials by Carburization of Nanocrystalline Iron

Published online by Cambridge University Press:  15 February 2011

U. Narkiewicz
Affiliation:
Institute of Chemical and Environment Engineering, Technical University of Szczecin, 10 Pulaskiego Str., 70-322 Szczecin, Poland
W. Arabczyk
Affiliation:
Institute of Chemical and Environment Engineering, Technical University of Szczecin, 10 Pulaskiego Str., 70-322 Szczecin, Poland
I. Kucharewicz
Affiliation:
Institute of Chemical and Environment Engineering, Technical University of Szczecin, 10 Pulaskiego Str., 70-322 Szczecin, Poland
M.J. Wozniak
Affiliation:
Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
H. Matysiak
Affiliation:
Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
K.J. Kurzydlowski
Affiliation:
Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
Get access

Abstract

Two products are formed in the process of carburization of iron with hydrocarbons: iron carbide (Fe3C, cementite) and in the next stage - carbon deposit. This paper deals with the formation of carbon deposit on nanocrystalline iron from ethylene decomposition and the reduction of its product with hydrogen.

The carburization process was controlled using spring thermobalance. The samples after carburization contained cementite and some amount of carbon deposit in the form of carbon nanofibers and carbon nanotubes. In the next step iron carbide had been reduced under hydrogen flow at 400 – 500°C and pure iron was obtained. Some carbon was hydrogenated and the morphology of the remaining carbon deposit was changed – thicker carbon nanofibers were eliminated and thinner carbon nanotubes remained.

The samples after carburization and reduction processes were characterized using XRD (X-rays Diffraction) and HRTEM (High Resolution Transmission Electron Microscopy) methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Qian, W., Liu, T., Wang, Z., Yu, H., Li, Z., Wie, F. and Luo, G., Carbon, 41, 2487 (2003).Google Scholar
2. Jia, Z., Wang, Z., Liang, J., Wie, B. and Wu, D., Carbon, 37, 903 (1999).Google Scholar
3. Venegoni, D., Serp, P., Feurer, R., Kihn, Y. Vahlas, C. and Kalck, P., Carbon, 40, 1799 (2002).Google Scholar
4. Qian, W., Liu, T., Wei, F., Wang, Z., Li, Y., ApCatal, p.. A: General, 258, 121 (2004).Google Scholar
5. Zhou, Z., Ci, L., Chen, X., Tang, D., Yan, X., Liu, D., Liang, Y., Yuan, H., Zhou, W., Wang, G., and Xie, S., Carbon, 41, 337 (2003).Google Scholar
6. Hernadi, K., Fonseca, A., Nagy, J. B., Bernaerts, D. and Lucas, A. A., Carbon, 34, 12491257, 1996.Google Scholar
7. Wei, B. Q., Vajtai, R., Ajayan, P. M., Carbon, 41, 179198, 2003.Google Scholar
8. Gulino, G., Vieira, R., Amadou, J., Nguyen, P., Ledoux, M. J., Galvagno, S., Centi, G., Pham–Huu, C., Appl. Catal., A: General, 279, 89 (2005).Google Scholar
9. Arabczyk, W., Konicki, W., Narkiewicz, U., Solid State Phenomena, 94 (Interfacial Effects and Novel Properties of Nanomaterials) 181 (2003).Google Scholar
10. Arabczyk, W., Konicki, W., Narkiewicz, U., Pattek-Jañczyk, A., J. Mater. Res. 20(2), 386 (2005).Google Scholar
11. Narkiewicz, U., Guskos, N., Arabczyk, W., Typek, J., Bodziony, T., Konicki, W., Gasiorek, G., Kucharewicz, I, Anagnostakis, A., Carbon, 42, 1127 (2004).Google Scholar
12. Zhang, Y., Shi, Z., Gu, Z., and Iijima, S., Carbon, 38, 2055 (2000).Google Scholar
13. Colomer, J. F., Piedigrosso, P., Fonseca, A., and Nagy, J. B., Synth. Met., 103, 2482 (1999).Google Scholar
14. Biro, L. P., Khanh, N. Q., Vertesy, Z., Horvath, Z. E., Osvath, Z., Koos, A., Gyulai, J., Kocsonya, A., Konya, Z., Zhang, X. B., Tendeloo, G. Van, Fonseca, A. and Nagy, J. B., Mater. Sci. Eng. C, 19, 9 (2002).Google Scholar
15. Shi, Z., Lian, Y., Zhou, X., Gu, Z., Zhang, Y. and Iijima, S., Solid State Comm., 112, 35 (1999).Google Scholar
16. Vaccarini, L., Goze, C., Aznar, R., Micholet, V., Journet, C. and Bernier, P., Synth. Met., 103, 2492 (1999).Google Scholar
17. Bougrine, A., Naji, A., Ghanbaja, J., Billaud, D., Synth. Met., 103, 2480 (1999).Google Scholar
18. Hernadi, K., Fonseca, A., Nagy, J. B., Bernaerts, D., Riga, J. and Lucas, A., Synth. Met., 77, 31 (1996).Google Scholar
19. Ivanov, V., Fonseca, A., Nagy, J. B., Lucas, A., Lambin, P., Bernaerts, D. and Zhang, X. B., Carbon, 33, 1727 (1995).Google Scholar