Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T06:49:11.268Z Has data issue: false hasContentIssue false

Synthesis of Silicon Nano-particles for Thin Film Electrodes Preparation

Published online by Cambridge University Press:  01 February 2011

David Munao
Affiliation:
d.munao@tudelft.nl, TUDelft, ChemE, Delft, Netherlands
Jan van Erven
Affiliation:
j.w.m.vanerven@tudelft.nl, TUDelft, ChemE, Delft, Zuid Holland, Netherlands
Mario Valvo
Affiliation:
M.Valvo@tudelft.nl, TUDelft, ChemE, Delft, Zuid Holland, Netherlands
Vincent Vons
Affiliation:
V.A.Vons@tudelft.nl, TUDelft, ChemE, Delft, Zuid Holland, Netherlands
Alper Evirgen
Affiliation:
A.Evirgen-1@student.tudelft.nl, TUDelft, ChemE, Delft, Zuid Holland, Netherlands
Erik Kelder
Affiliation:
E.M.Kelder@tudelft.nl, TUDelft, ChemE, Delft, Zuid Holland, Netherlands
Get access

Abstract

The present work concerns novel approaches to fabricate silicon-based electrodes. In this study silicon nano-particles are synthesized via two aerosol routes: Laser assisted Chemical Vapour Pyrolysis (LaCVP) and Spark Discharge Generation (SDG). These two techniques allow the generation of uniformly sized particles, with a good control over the composition and the range of sizes. Herein, particles with size ranging from 2 to 70 nm were obtained. Starting from these nano-particles, nano-structured porous thin films are produced either by electrospraying a polymeric solution in which LaCVP-produced particles were previously dispersed, or by inertial impacting the SDG-produced particles directly from gas phase onto a substrate. The Electro- Spray (ES) is used to produce composite films for Li-ion battery applications, whereas the Inertial Impaction (II) is used to produce pure silicon films for other purposes (i.e.: sensors).

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Li, X., He, Y., Talukdar, S. S. and Swihart, M. T., Langmuir 19 (20), 84908496 (2003).Google Scholar
2 Graetz, J., Ahn, C., Yazami, R. and Fultz, B., Electrochemical And Solid State Letters 6 (9), A194–A197 (2003).Google Scholar
3 Erogbogbo, F., Yong, K.-T., Roy, I., Xu, G. X., Prasad, P. N. and Swihart, M. T., ACS Nano 2 (5), 873878 (2008).Google Scholar
4 Kasavajjula, U., Wang, C. and Appleby, A. J., J Power Sources 163 (2), 10031039 (2007).Google Scholar
5 Cannon, W., Danforth, S., Flint, J., Haggerty, J. and Marra, R., Journal Of The American Ceramic Society 65 (7), 324330 (1982).Google Scholar
6 Cannon, W., Danforth, S., Haggerty, J. and Marra, R., Journal Of The American Ceramic Society 65 (7), 330335 (1982).Google Scholar
7 Bauer, R. A., Kruis, F. E., Becht, J. G. M., Scarlett, B. and Schoonman, J., High Temperature Science 27 (pt 2), 7788 (1988).Google Scholar
8 Schwyn, S., Garwin, E. and Schmidt-Ott, A., Journal of Aerosol Science 19 (5), 639642 (1988).Google Scholar
9J. van Erven, Munao, D., Fu, Z., Trzeciak, T., Janssen, R., Kelder, E. and Marijnissen, J. C. M., Kona 27, 157173 (2009).Google Scholar
10 Tabrizi, N. S., Ullmann, M., Vons, V. A., Lafont, U. and Schmidt-Ott, A., Journal of Nanoparticle Research 11 (2), 315332 (2009).Google Scholar
11 Peineke, C., PhD, TUDelft, 2008.Google Scholar
12 Lafont, U., Simonin, L., Tabrizi, N. S., Schmidt-Ott, A. and Kelder, E. M., Journal of Nanoscience and Nanotechnology 9 (4), 25462552 (2009).Google Scholar