Skip to main content
×
Home

Synthesis of Tin Oxide Nanoparticles Using a Mini-arc Plasma Source

  • Ganhua Lu (a1), Junhong Chen (a1) and Marija Gajdardziska-Josifovska (a2)
Abstract
Abstract

Miniaturized electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. Use of tin oxide nanoparticles as sensing elements has been proved to significantly improve both the response time and the sensitivity of gas sensors or electronic noses. In this paper, we report the synthesis of pure tin oxide nanoparticles using a simple, convenient, and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM) for morphology, crystal structure, and defects. Non-agglomerated rutile tin oxide (SnO2) nanoparticles as small as a few nm have been produced, with rounded shapes and some faceting on the lowest energy surfaces.

Copyright
References
Hide All
1. Summitt R., Marley J.A., and Borrelli N.F., J. Phys. Chem. Solids. 25(12), 1465 (1964).
2. Shimizu Y. and Egashira M., MRS Bulletin. 24(6), 18 (1999).
3. Williams D.E., Conduction and Gas Response of Semiconductor Gas Sensors, in Solid State Gas Sensors, edited by Tofield B.C. (Adam Hilger, Bristol 1987), p. 71.
4. Chang S.C., J. Vac. Sci. Technol. 17(1), 366 (1980).
5. Kennedy N.K., Kruis F.E., Fissan H., Mehta B.R., Stappert S., and Dumpich G., J. Appl. Phys. 93(1), 551 (2003).
6. Su M., Li S., and Dravid V.P., J. Am. Chem. Soc. 125, 9930 (2003).
7. Shin H.S., Yang H.J., Kim S.B., and Lee M.S., J. Colloid Interf. Sci. 274(1), 89 (2004).
8. Bognolo G., Adv. Colloid Interfac. 106, 169 (2003).
9. Kruis F.E., Fissan H., and Peled A., J. Aerosol Sci. 29(5-6), 511 (1998).
10. Siegel R.W., Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 168(2), 189 (1993).
11. Flagan R.C. and Lunden M.M., Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 204, 113 (1995).
12. Wang S.C. and Flagan R.C., Aerosol Sci. Technol. 13, 230 (1990).
13. Wiedensohler A., J. Aerosol Sci. 19(3), 387 (1988).
14. Yun C.M., Otani Y., and Emi H., Aerosol Sci. Technol. 26, 389 (1997).
15. Krinke T.J., Deppert K., Magnusson M.H., Schmidt F., and Fissan H., J. Aerosol Sci. 33, 1341 (2002).
16. Dixkens J. and Fissan H., Aerosol Sci. Technol. 30, 438 (1999).
17. Chen D.R., Pui D.Y.H., Hummes D., Fissan H., Quant F.R., and Sem G.J., J. Aerosol Sci. 29 (5-6), 497 (1998).
18. Leite E.R., Giraldi T.R., Pontes F.M., Longo E., Beltran A., and Andres J., Appl. Phys. Lett. 83(8), 1566 (2003).
19. Pan X. and Zheng J.Z., Mat. Res. Soc. Symp. Proc. 472(Materials Research Society), 87 (1997).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 38 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 14th December 2017. This data will be updated every 24 hours.