Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T07:46:13.158Z Has data issue: false hasContentIssue false

Synthesis of Vertically Aligned Multi-Walled Carbon Nanotubes on Copper Substrates for Applications as Thermal Interface Materials

Published online by Cambridge University Press:  31 January 2011

WEI LIN
Affiliation:
wlin31@gatech.edu, Georgia Institute of Technology, Materials science and engineering, ATLANTA, Georgia, United States
Chingping Wong
Affiliation:
cp.wong@mse.gatech.edu, Georgia Institute of Technology, school of materials science and engineering, 771 Ferst Drive NW., School of Material Science & Engineering, ATLANTA, Georgia, 30332, United States
Get access

Abstract

Vertically aligned carbon nanotubes (VACNTs) grown on bulk copper substrate are of great importance for CNT real-life applications as thermal interface materials in microelectronic packaging. However, their reproducible synthesis has been a great challenge so far. In this study, by introducing a well-controlled conformal Al2O3 support layer on the bulk copper substrate by atomic layer deposition (ALD) prior to the deposition of the iron catalyst layer, we reproducibly synthesize VACNTs of good alignment and high quality on the copper substrate, using a conventional thermal chemical vapor deposition process. The alignment and the quality are characterized by scanning electronic microscopy and Raman spectroscopy, respectively. The roles of the conformal Al2O3 support layer are discussed. A kinetics-controlled growth mechanism is shown. This progress provides a viable VACNT commercial application for thermal management, on the basis of which, we show a recent progress on a state-of-art Si/VACNT/Cu assembling process, named “chemical anchoring”. The high quality of the VACNTs on the copper growth substrate and the covalent bonding formed between the VACNTs and the silicon mating substrate greatly reduces the thermal resistance of the VACNT-mediated thermal interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Graham, A. P. Duesberg, G. S. Seidel, R. V. Liebau, M. Unger, E. Pamler, W. Kreupl, F. and Hoenlein, W.Carbon nanotubes for microelectronics?,” Small, vol. 1, pp. 382390, Apr 2005.Google Scholar
[2] Ebbesen, T. W. Lezec, H. J. Hiura, H. Bennett, J. W. Ghaemi, H. F. and Thio, T.Electrical conductivity of individual carbon nanotubes,” Nature, vol. 382, pp. 5456, Jul 1996.Google Scholar
[3] Baughman, R. H. Zakhidov, A. A. and Heer, W. A. de, “Carbon nanotubes - the route toward applications,” Science, vol. 297, pp. 787792, Aug 2002.Google Scholar
[4] Pop, E. Mann, D. Wang, Q. Goodson, K. and Dai, H. J.Thermal conductance of an individual single-wall carbon nanotube above room temperature,” Nano Letters, vol. 6, pp. 96100, Jan 2006.Google Scholar
[5] Panzer, M. A. Zhang, G. Mann, D. Hu, X. Pop, E. Dai, H. and Goodson, K. E.Thermal properties of metal-coated vertically aligned single-wall nanotube arrays,” Journal of Heat Transfer-Transactions of the Asme, vol. 130, May 2008.Google Scholar
[6] Xu, J. and Fisher, T. S.Enhancement of thermal interface materials with carbon nanotube arrays,” International Journal of Heat and Mass Transfer, vol. 49, pp. 16581666, May 2006.Google Scholar
[7] Tong, T. Zhao, Y. Delzeit, L. Kashani, A. Meyyappan, M. and Majumdar, A.Dense, vertically aligned multiwalled carbon nanotube arrays as thermal interface materials,” Ieee Transactions on Components and Packaging Technologies, vol. 30, pp. 92100, Mar 2007.Google Scholar
[8] Kordas, K. Toth, G. Moilanen, P. Kumpumaki, M. Vahakangas, J. Uusimaki, A. Vajtai, R., and Ajayan, P. M.Chip cooling with integrated carbon nanotube microfin architectures,” Applied Physics Letters, vol. 90, Mar 2007.Google Scholar
[9] Cola, B. A. Xu, J. Cheng, C. R. Xu, X. F. Fisher, T. S. and Hu, H. P.Photoacoustic characterization of carbon nanotube array thermal interfaces,” Journal of Applied Physics, vol. 101, Mar 2007.Google Scholar
[10] Huang, H. Liu, C. H. Wu, Y. and Fan, S. S.Aligned carbon nanotube composite films for thermal management,” Advanced Materials, vol. 17, pp. 16521653, Jul 2005.Google Scholar
[11] Sihn, S. Ganguli, S. Roy, A. K. Qu, L. T. and Dai, L. M.Enhancement of throughthickness thermal conductivity in adhesively bonded joints using aligned carbon nanotubes,” Composites Science and Technology, vol. 68, pp. 658665, Mar 2008.Google Scholar
[12] Cola, B. A. Xu, X. F. and Fisher, T. S.Increased real contact in thermal interfaces: A carbon nanotube/foil material,” Applied Physics Letters, vol. 90, Feb 2007.Google Scholar
[13] Zhu, L. B. Hess, D. W. and Wong, C. P. “Assembling Carbon Nanotube Films as Thermal Interface Materials,” in Electronic Components and Technology Conference: IEEE, 2007, pp. 20062010 Google Scholar
[14] Lin, W. Moon, K. S. and Wong, C. P. “A Combined Process of In-Situ Functionalization and Microwave Treatment to Achieve Ultra-Small Thermal Expansion of Aligned Carbon Nanotube/Polymer Nanocomposites: toward Applications as Thermal Interface Materials,” Advanced Materials, 2008.Google Scholar
[15] Wang, B. A. Liu, X. Y. Liu, H. M. Wu, D. X. Wang, H. P. Jiang, J. M. Wang, X. B. Hu, P. A., Liu, Y. Q. and Zhu, D. B.Controllable preparation of patterns of aligned carbon nanotubes on metals and metal-coated silicon substrates,” Journal of Materials Chemistry, vol. 13, pp. 11241126, 2003.Google Scholar
[16] Xu, F. S. Liu, X. F. and Tse, S. D.Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames,” Carbon, vol. 44, pp. 570577, Mar 2006.Google Scholar
[17] Hofmeister, W. Kang, W. P. Wong, Y. M. and Davidson, J. L.Carbon nanotube growth from Cu-Co alloys for field emission applications,” Journal of Vacuum Science & Technology B, vol. 22, pp. 12861289, May-Jun 2004.Google Scholar
[18] Karwa, M. Iqbal, Z. and Mitra, S.Selective self-assembly of single walled carbon nanotubes in long steel tubing for chemical separations,” Journal of Materials Chemistry, vol. 16, pp. 28902895, 2006.Google Scholar
[19] Talapatra, S. Kar, S. Pal, S. K. Vajtai, R. Ci, L. Victor, P. Shaijumon, M. M. Kaur, S. Nalamasu, O., and Ajayan, P. M.Direct growth of aligned carbon nanotubes on bulk metals,” Nature Nanotechnology, vol. 1, pp. 112116, Nov 2006.Google Scholar
[20] Gao, L. J. Peng, A. P. Wang, Z. Y. Zhang, H. Shi, Z. J. Gu, Z. N. Cao, G. P. and Ding, B. Z., “Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors,” Solid State Communications, vol. 146, pp. 380383, Jun 2008.Google Scholar
[21] Singh, M. K. Singh, P. P. Titus, E. Misra, D. S. and LeNormand, F.High density of multiwalled carbon nanotubes observed on nickel electroplated copper substrates by microwave plasma chemical vapor deposition,” Chemical Physics Letters, vol. 354, pp. 331336, Mar 2002.Google Scholar
[22] Wang, H. Feng, J. Y. Hu, X. J. and Ng, K. M.Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor deposition,” Journal of Physical Chemistry C, vol. 111, pp. 1261712624, Aug 2007.Google Scholar
[23] Yin, X. W. Wang, Q. L. Lou, C. G. Zhang, X. B. and Lei, W.Growth of multi-walled CNTs emitters on an oxygen-free copper substrate by chemical-vapor deposition,” Applied Surface Science, vol. 254, pp. 66336636, Aug 2008.Google Scholar
[24] Zhu, L. B. Hess, D. W. and Wong, C. P.Monitoring carbon nanotube growth by formation of nanotube stacks and investigation of the diffusion-controlled kinetics,” Journal of Physical Chemistry B, vol. 110, pp. 54455449, Mar 2006.Google Scholar
[25] Zhu, L. B. Xu, J. W. Xiao, F. Jiang, H. J. Hess, D. W. and Wong, C. P.The growth of carbon nanotube stacks in the kinetics-controlled regime,” Carbon, vol. 45, pp. 344348, Feb 2007.Google Scholar
[26] Zhu, L. B. Xiu, Y. H. Hess, D. W. and Wong, C. P.Aligned carbon nanotube stacks by water-assisted selective etching,” Nano Letters, vol. 5, pp. 26412645, Dec 2005.Google Scholar
[27] Zhu, L. B. Sun, Y. Y. Hess, D. W. and Wong, C. P.Well-aligned open-ended carbon nanotube architectures: An approach for device assembly,” Nano Letters, vol. 6, pp. 243247, Feb 2006.Google Scholar
[28] Hata, K. Futaba, D. N. Mizuno, K. Namai, T. Yumura, M. and Iijima, S.Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes,” Science, vol. 306, pp. 13621364, Nov 2004.Google Scholar
[29] Powell, C. F.;, Oxley, J. H.;, and Johan, J. Blocher, M. vapor deposition. New York: JOHN WILEY & SONS, INC., 1966.Google Scholar
[30] Arcos, T. de los, Vonau, F. Garnier, M. G. Thommen, V. Boyen, H. G. Oelhafen, P. Duggelin, M., Mathis, D. and Guggenheim, R.Influence of iron-silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition,” Applied Physics Letters, vol. 80, pp. 23832385, Apr 2002.Google Scholar
[31] Xiu, Y. H. Zhang, S. Yelundur, V. Rohatgi, A. Hess, D. W. and Wong, C. P.Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching,” Langmuir, vol. 24, pp. 1042110426, Sep 2008.Google Scholar
[32] Pisana, S. Cantoro, M. Parvez, A. Hofmann, S. Ferrari, A. C. and Robertson, J.The role of precursor gases on the surface restructuring of catalyst films during carbon nanotube growth,” Physica E-Low-Dimensional Systems & Nanostructures, vol. 37, pp. 15, Mar 2007.Google Scholar
[33] Rodriguez, N. M.A Review of Catalytically Grown Carbon Nanofibers,” Journal of Materials Research, vol. 8, pp. 32333250, Dec 1993.Google Scholar
[34] Deck, C. P. and Vecchio, K.Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams,” Carbon, vol. 44, pp. 267275, Feb 2006.Google Scholar
[35] Deng, W. Q. Xu, X. and Goddard, W. A.A two-stage mechanism of bimetallic catalyzed growth of single-walled carbon nanotubes,” Nano Letters, vol. 4, pp. 23312335, Dec 2004.Google Scholar
[36] Krishnankutty, N. Park, C. Rodriguez, N. M. and Baker, R. T. K.The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene,” Catalysis Today, vol. 37, pp. 295307, Aug 1997.Google Scholar
[37] Almazouzi, A. Macht, M. P. Naundorf, V. and Neumann, G.Diffusion of iron and nickel in single-crystalline copper,” Physical Review B, vol. 54, pp. 857863, Jul 1996.Google Scholar
[38] Kononchuk, O. Korablev, K. G. Yarykin, N. and Rozgonyi, G. A.Diffusion of iron in the silicon dioxide layer of silicon-on-insulator structures,” Applied Physics Letters, vol. 73, pp. 12061208, Aug 1998.Google Scholar
[39] Puurunen, R. L.Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” Journal of Applied Physics, vol. 97, Jun 2005.Google Scholar
[40] Rahtu, A. Alaranta, T. and Ritala, M.In situ quartz crystal microbalance and quadrupole mass spectrometry studies of atomic layer deposition of aluminum oxide from trimethylaluminum and water,” Langmuir, vol. 17, pp. 65066509, Oct 2001.Google Scholar
[41] Groner, M. D. Elam, J. W. Fabreguette, F. H. and George, S. M.Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates,” Thin Solid Films, vol. 413, pp. 186197, Jun 2002.Google Scholar
[42] Hone, J. Batlogg, B. Benes, Z. Johnson, A. T. and Fischer, J. E.Quantized phonon spectrum of single-wall carbon nanotubes,” Science, vol. 289, pp. 17301733, Sep 2000.Google Scholar