Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T17:58:46.252Z Has data issue: false hasContentIssue false

Synthesis of ZnO Nanowires by Pulsed Laser Deposition in Furnace

Published online by Cambridge University Press:  01 February 2011

Kyung Ah Jeon
Affiliation:
elfeka@yonsei.ac.kr, yonsei university, 134 Shinchondong, Seodaemunku, seoul, N/A, 120-749, Korea, Republic of
Hyo Jeong Son
Affiliation:
shj4784@yonsei.ac.kr
Jong Hoon Kim
Affiliation:
chijeon@yonsei.ac.kr
K. H. Yoo
Affiliation:
khyoo@yonsei.ac.kr
Sang Yeol Lee
Affiliation:
sylee@yonsei.ac.kr
Get access

Abstract

ZnO nanowires (NWs) were fabricated on Au coated sapphire (0001) substrates by using a pulsed laser deposition (PLD) system in vacuum furnace with a Q-switched Nd:YAG laser. ZnO NWs have various size and shape with a substrate position inside a furnace, and their morphologic construction is reproducible. Scanning electron microscopy (SEM) images indicate that the diameters of ZnO NWs ranged from 100 to 150 nm and the average length was greater than 3 μm. Room-temperature photoluminescence spectra of the NWs show the near band-edge emissions and the deep-level green light emissions. The formation mechanism of the NWs is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Duan, X., Huang, Y., Cui, Y., Wang, J., Liber, C. M., Nature, 409, 66 (2001).Google Scholar
2. Service, R. F., Science, 28, 1940 (1998).Google Scholar
3. Liu, Z. Q., Zhou, W. Y., Sun, L. F., Tang, D. S., Zou, X. P., Li, Y. B., Wang, C. Y., Wang, G., Xie, S. S., Chem. Phys. Lett., 341, 523 (2001).Google Scholar
4. Zhang, R.Q., Chu, T.S., Cheung, H.F., Wang, N., Lee, S.T., Mater. Sci. Eng. C, 16, 31 (2001).Google Scholar
5. Wang, N., Tang, Y.H., Zhang, Y.F., Lee, C.S., Bello, I., Lee, S.T., Chem. Phys. Lett., 299, 237 (1999).Google Scholar
6. Touloukian, Y.E., Kirby, R. K., Taylor, R.E., Desai, P.D., IFI/plenum, 12 (1975).Google Scholar
7. Kelly, R., and Rothenberg, J. E., Nucl. Instrum. Meth. Phys. Res., B7/8, 755 (1985).Google Scholar
8. R.S.Wagner and Ellis, W. C., Appl. Phys. Lett., 4, 89 (1964).Google Scholar
9. Kong, Y. C., Yu, D. P., Zhang, B., Fang, W., and Feng, S. Q., Appl. Phys. Lett. 78, 407 (2001).Google Scholar
10. Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A., Gnade, B. E., J. Appl. Phys. 79, 7983 (1996).Google Scholar