Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T23:34:05.441Z Has data issue: false hasContentIssue false

Tailoring Magnetic Microspheres with Controlled Porosity

Published online by Cambridge University Press:  26 February 2011

Muhammet S Toprak
Affiliation:
mtoprak@chem.ucsb.edu, University of California, Dept of Chemistry, Dept of Chemistry and Biochemistry, Santa Barbara CA 93106, Santa Barbara, CA, 93117, United States, +1 805 8937759
Brandon J McKenna
Affiliation:
bmckenna@chem.ucsb.edu, UC, Chemistry and Biochemistry, Santa Barbara, CA, 93117, United States
Herb Waite
Affiliation:
waite@lifesci.ucsb.edu, UC, Chemistry and Biochemistry, Santa Barbara, CA, 93117, United States
Galen D Stucky
Affiliation:
stucky@chem.ucsb.edu, UC, Chemistry and Biochemistry, Santa Barbara, CA, 93117, United States
Get access

Abstract

The synthesis of organic and inorganic nano- and microspheres has attracted much interest for a variety of applications ranging from drug delivery to chemical storage and catalysis. We recently demonstrated the assembly of magnetic nanoparticles and polycations into hybrid microspheres in a single-step synthesis via complex coacervation. These microspheres showed viability for bio-applications as indicated by toxicity tests, and are therefore potential targeted drug delivery devices, as they can be directed magnetically. This work reports the recent progress on the potential use of these assemblies in drug release by controlling their porosity. Fluorescein tagged dextran molecules with different MW have been infiltrated into these entities to determine critical pore size by confocal fluorescence microscopy. Different physicochemical characterization results are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tartaj, P., Morales, M. P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., Serna, C. J., J. Phys. D: Appl. Phys. 36, R182 (2003).Google Scholar
2. Hafeli, U., Pauer, G., Failing, S., Tapolsky, G., J. Magn. Magn. Mater. 225, 73 (2001).Google Scholar
3. Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M., Von Rechenberg, B., J. Magn. Magn. Mater. 293, 483 (2005).Google Scholar
4. Mornet, S., Vasseur, S., Grasset, F., Duguet, E., J. Mater. Chem. 14, 2161 (2004)Google Scholar
5. Högemann, D., Josephson, L., Weissleder, R., Basilion, J. P., Bioconjugate Chem. 11, 941 (2000)Google Scholar
6. Baselt, D. R., Lee, G. U., Natesan, M., Metzger, S. W., Sheehan, P. E., Colton, R. J., Biosens. Bioelectron. 13, 731 (1998)Google Scholar
7. Ugelstad, J., Berge, A., Ellingsen, T., Schmid, R., Nilsen, T.-N., Mork, P. C., Stenstad, P., Hornes, E., Olsvik, O., Prog. Polym. Sci. 17, 87 (1992).Google Scholar
8. Bergemann, C., Muller-Schulte, D., Oster, J., Brassard, L. A., Lubbe, A.S., J. Magn. Magn. Mater. 194, 45 (1999).Google Scholar
9. Chemla, Y. R., Crossman, H. L., Poon, Y., McDermott, R., Stevens, R., Alper, M. D., Clarke, J., Proc. Natl. Acad. Sci. USA 97, 14268 (2000).Google Scholar
10. Megens, M., Prins, M., J. Magn. Magn. Mater. 293, 702 (2005).Google Scholar
11. Ramanujak, R.V., Chong, W.T., J. Mater. Sci. Mater. Med. 15, 901 (2004).Google Scholar
12. Yang, C., Liu, H., Guan, Y., Xing, J., Liu, J., Shan, G., J. Magn. Magn.Mater. 293, 187 (2005).Google Scholar
13. Horák, D., Semenyuk, N., Lednicky, F., J. Polym. Sci. Polym. Chem.Ed. 41, 1848 (2003)Google Scholar
14. Kondo, A., Kamura, H., Higashitani, K., Appl. Microbiol. Biotechnol. 41, 99 (1994).Google Scholar
15. Caruso, F., Susha, A. S., Giersig, M., Möhwald, H., Adv. Mater. 11, 950 (1999).Google Scholar
16. Tong, W., Gao, C., Möhwald, H., Chem. Mater. 17, 4610 (2005).10.1021/cm0507516Google Scholar
17. Toprak, M. S., Mckenna, B., Stucky, G., Waite, H., to be published in Adv. Mater. Google Scholar