Hostname: page-component-76dd75c94c-qmf6w Total loading time: 0 Render date: 2024-04-30T08:26:08.850Z Has data issue: false hasContentIssue false

Tantalum-Nitride Diffusion Barrier Studies Using the Transient-Ion-Drift Technique for Copper Detection

Published online by Cambridge University Press:  17 March 2011

T. Heiser
Affiliation:
University Louis Pasteur, Laboratoire de Physique et Applications des Semiconducteurs, CNRS, BP20 F67037 Strasbourg Cedex 2, France
C. Brochard
Affiliation:
University Louis Pasteur, Laboratoire de Physique et Applications des Semiconducteurs, CNRS, BP20 F67037 Strasbourg Cedex 2, France
M. Swaanen
Affiliation:
at ST Microelectronics, 850, rue Jean Monnet B.P. 16, F-38921 Crolles cedex, on leave of absence from Philips Electronics, Eindhoven, Netherlands
Get access

Abstract

The permeability of 5 nm thick TaN, Ta and TiN diffusion barriers has been studied by monitoring the bulk copper concentration in silicon after isothermal and isochronal annealing experiments with a transient-ion-drift (TID) technique. The method estimates quantitatively the bulk copper concentration in silicon from capacitance transients of a Schottky barrier which arise when copper ions drift out of the depletion region towards the quasi-neutral region. The correlation between the copper lateral distribution and the position of the copper metal is used to distinguish between background contamination and copper originating from barrier leakage. The TID detection limit is found lower than 1012at/cm3, which makes this technique particularly well adapted for quantitative diffusion barrier studies. Isothermal and isochronal annealing experiments show that TaN fails at a higher temperature than Ta barriers. The copper concentration does not exceed the solubility limit, indicating that copper precipitates nucleate rapidly at the interface. The opposite is found in TiN covered samples where a large copper supersaturation is obtained even after short annealing times.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stavrev, M., Fischer, D., Wenzel, C. and Heiser, T., Microelectronic Engineering, 37/38, 245 (1997)10.1016/S0167-9317(97)00118-4Google Scholar
2. Lee, Yoon-Jik, Suh, Bong-Seok, Rha, Sa-Kyun, and Park, Chong-Ook, Thin Solid Films 320, 141 (1998)10.1016/S0040-6090(97)01078-XGoogle Scholar
3. The National Technology Roadmap for Semiconductors (Semiconductor Industry Association - SIA, San José, CA, 1994)Google Scholar
4. Heiser, T. and Mesli, A., Applied Physics A 57, 325 (1993)10.1007/BF00332285Google Scholar
5. Heiser, T. and Weber, E.R., Physical Review B, 58, 3893 (1998)10.1103/PhysRevB.58.3893Google Scholar
6. Heiser, T., Istratov, A.A., Flink, C., and Weber, E.R., Material Science Engineering B58, 149 (1999)10.1016/S0921-5107(98)00287-6Google Scholar
7. Istratov, A.A., Heiser, T., Flink, C., Hieslmair, H., and Weber, E.R., Physical Review Letters, 81, 1243 (1998)10.1103/PhysRevLett.81.1243Google Scholar
8. Heiser, T., McHugo, S., Hieslmair, H., and Weber, E.R., Applied Physics Letters, 70, 3576, (1997)10.1063/1.119238Google Scholar
9. Heiser, T., McHugo, S., Hieslmair, H., and Weber, E.R., Mat. Res. Soc. symposium on Defects and Diffusion In Silicon Processing, San Francisco (USA, 1997)Google Scholar
10. Flink, C., Feick, H., McHugo, S., Seifert, W., Hieslmair, H., Heiser, T., Istratov, A.A., and Weber, E.R., Physica B, 273, 437 (1999)10.1016/S0921-4526(99)00499-8Google Scholar
11. Hall, R.F. and Racette, J.H., J. Appl. Phys. 35, 379 (1964)10.1063/1.1713322Google Scholar