Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T18:06:00.477Z Has data issue: false hasContentIssue false

Temperature Control and System Design Aspects in Rapid Thermal Processing

Published online by Cambridge University Press:  28 February 2011

Fred Roozeboom*
Affiliation:
Philips Research Laboratories, PO Box 80,000, NL-5600 JA Eindhoven, The Netherlands
Get access

Abstract

The main factors influencing the thermal performance (and thus product yield) of a rapid thermal processor are the heat source, the reaction chamber, the temperature measurement system, and as complicating factors, their total configuration and the optical wafer properties.

The characteristics of 19 currently available commercial RTP systems are highlighted with focus on temperature control including the spectral characteristics and measures to suppress perturbations due to stray radiation.

In addition recent developments and trends in the system configuration and in the optimization of temperature or layer thickness control are discussed. The improvements in temperature control focus especially on in situ temperature control, irrespective of wafer condition, and at system constructions that optimize dynamic temperature uniformity. Some novel optical process control and novel system design aspects to compensate for emissivity changes and temperature non-uniformity are included.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fairfield, J.M. and Schwuttke, G.H., Solid St. Electron. 11, 1175, (1968).Google Scholar
2. Hart, M.J. and Evans, A.G., Semicond. Sci. Technol. 3, 421, (1988).CrossRefGoogle Scholar
3. Singh, R., J. Appl. Phys. 63, R59 (1988), and refs. therein.Google Scholar
4. Hill, C., Jones, S. and Boys, D., NATO ASI Ser. B 207, 143, (1989).Google Scholar
5. Kermani, A., Johnsgard, K.E. and Wong, F., Solid St. Technol. 34 (5), 71 (1991).Google Scholar
6. Hsieh, T.Y., Jung, K.H. and Kwong, D.L., J. Electrochem. Soc. 138, 1188, (1991).CrossRefGoogle Scholar
7. de Boer, W.B. and Meyer, D.J., Appl. Phys. Lett. 58, 1286 (1991);Google Scholar
Kamins, T.I. and Meyer, D.J., Appl. Phys. Lett. 59, 178 (1991);CrossRefGoogle Scholar
Agnello, P.D. et al. , J. Vac. Sc. Technol. B9, in press.Google Scholar
8. Yu, C.T., Isaak, K.H. and Sheets, R.E., J. Electrochem. Soc. 137, 530C (1990); Semicond. Intern. 14 (6), 166 (1991).Google Scholar
9. Uoochi, Y., Tabuchi, A. and Furumura, Y., J. Electrochem. Soc. 137, 3923, (1990).CrossRefGoogle Scholar
10. Regolini, J.L., Dutartre, D., Bensahel, D. and Penelon, J., Solid St. Technol. 34 (2), 47 (1991).Google Scholar
11. Katz, A. and Pearson, S.J., J. Vac. Sc. Technol. B8, 1285 (1990);CrossRefGoogle Scholar
Pearson, S.J., Kazier, T.E., Brierley, S.K. and Piekarski, F.J., IEEE Trans. Semicond. Manufact. 4, 21, (1991).Google Scholar
12. Landin, S.M. and Schulze, W.A., J. Am. Ceram. Soc. 73, 909 (1990); 913 (1990).CrossRefGoogle Scholar
13. Suzuki, T., J. Appl. Phys. 69, 4756, (1991).CrossRefGoogle Scholar
14. Roozeboom, F. and Parekh, N., J. Vac. Sc. Technol. B8, 1249 (1990), and refs. therein.Google Scholar
15. Seppala, M., Microelectr. Manufact. Test. 13, 19, (1990).Google Scholar
16. Sato, T., Jpn. J. Appl. Phys. 6, 339, (1967).Google Scholar
17. Lee, C. and Chizinsky, G., Solid State Technol. 32 (1), 43 (1989).Google Scholar
18. Dimmock, J.O., J. Electron. Mat. 1, 255, (1972).CrossRefGoogle Scholar
19. Volklein, F. and Wiegand, A., Sensors and Actuators A 24, 1, (1990).Google Scholar
20. van Herwaarden, A.W. and Sarro, P.M., Sensors and Actuators 10, 321, (1986).CrossRefGoogle Scholar
21. Wollmann, L.R., Electro-opt. Syst. Des. (Sept. 1979) 37.Google Scholar
22. Campbell, S.A., Ahn, K.-H., Knutson, K.L., Liu, B.Y.H. and Leighton, J.D., IEEE Trans. Semicond. Manuf. 4, 14, (1991).CrossRefGoogle Scholar
23. Wolfe, W.L. and Zissis, G.J., The infrared handbook, Environmental Res. Inst. of Michigan, Ann Arbor, 1978, Ch. 2.Google Scholar
24. Usami, A., Denki Kagaku 57, 758 (1989), in Japanese.Google Scholar
25. Schietinger, C.W., Adams, B.E. and Yarling, C.B., these proceedings, p. 23.Google Scholar
26. Lord, H.A., IEEE Trans. Semicond. Manufact. 1, 105, (1988).Google Scholar
27. Vandenabeele, P. and Maex, K., Soc. Photo-Opt. Instrum. Eng. Symp. Proc. 1189, 89 (1989); 1393, 316 (1990); Eur. Patent 381 253 (8 Aug. 1990); these proceedings, p. 185.Google Scholar
28. Kakoschke, R. and Bussmann, E., Mater. Res. Soc. Symp. Proc. 146, 473, (1989).Google Scholar
29. Sheets, R.E., Nucl. Instrum. Meth. Phys. Res. B6, 219, (1985).Google Scholar
30. Gouffé, A., Revue d'optique 24, 1, (1945).Google Scholar
31. Adams, D.V., Anderson, R.N. and Deacon, T.E., US Patent No. 4 920 918 (1 May 1990).Google Scholar
32. de Boer, W.B. and Ozias, A.E., US Patent No. 4 821 674 (18 April 1989).Google Scholar
33. Gibbons, J.F., Gronet, C.M. and Williams, K.E., Appl. Phys. Lett. 47, 721, (1985).Google Scholar
34. Coates, P.B., Metrologia 17, 103 (1981);CrossRefGoogle Scholar
Gardner, J.L. and Jones, T.P., J. Phys. E. Sci. Instrum. 13, 306, (1980).Google Scholar
35. Mordo, D. and Wassermann, Y., Soc. Photo-Opt. Instrum. Eng. Symp. Proc. 1595, in press.Google Scholar
36. Sturm, J.C., Schwartz, P.V. and Garone, P.M., Appl. Phys. Lett. 56, 961 (1990);Google Scholar
Sturm, J.C. and Reaves, C.M., Soc. Photo-Opt. Instrum. Eng. Symp. Proc. 1393, 309, (1990).Google Scholar
37. Jans, J., Hollering, R. and Erman, M. in “Analysis of microelectronic materials and devices” (Grasserbauer, M. and Werner, H.W., eds.), J.Wiley, New York, 1991, Ch. 4.1.Google Scholar
38. Hansen, G.P., Krishnan, S., Hauge, R.H. and Margrave, J.L., Appl. Optics 28, 1885, (1989).Google Scholar
39. Severin, P.J. and Severijns, A.P., J. Electrochem. Soc. 137, 1306, (1990).CrossRefGoogle Scholar
40. Peters, L., Semicond. Intern. 14 (9), 56 (1991).Google Scholar