Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T11:30:25.404Z Has data issue: false hasContentIssue false

Theoretical Performance Of Mid-Infrared Broken-Gap Multilayer Superlattice Lasers

Published online by Cambridge University Press:  10 February 2011

Michael E. Flatté
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242
J. T. Olesberg
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242
C. H. Grein
Affiliation:
Department of Physics, University of Illinois, Chicago, IL 60607
Get access

Abstract

We present calculations of the intersubband absorption and Auger recombination rate of superlattices based on the InAs/GaInSb material system involving more than two layers in the repeating unit cell and strain balanced to match the GaSb substrate. We demonstrate theoretically the presence of final-state optimization in a 4.0 μm strain-balanced brokengap superlattice. This system's band structure is optimized not only at the band edge, where the valence density of states has been reduced, but also at resonance energies, where reside final states for Auger and intersubband processes. The spectral structure of the intersubband absorption, which for some wavelengths near the lasing wavelength can exceed 500 cm−1 at lasing threshold, has been considered when designing this active region. Fortunately, final-state optimized designs which minimize Auger recombination tend to minimize intersubband absorption as well. The effectiveness of final-state optimization is evaluated by considering band structures with identical band edge structure, but different final-state structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hasenberg, T. C., Miles, R. H., Kost, A. R., and West, L., IEEE J. Q. E. 33, 1403 (1997).Google Scholar
2. Choi, H.K., Turner, G.W. and Manfra, M.J., Electron. Lett. 32, 1296 (1996); H.K. Choi, G.W. Turner, M.J. Manfra and M.K. Connors, Appl. Phys. Lett. 68, 2936 (1996).Google Scholar
3. Malin, J.I., Meyer, J.R., Felix, C.L., Lindle, J.R., Goldberg, L., Hoffman, C.A., and Bartoli, F.J., Appl. Phys. Lett. 68, 2976 (1996).Google Scholar
4. Felix, C. L., Meyer, J. R., Vurgaftan, I., Lin, C. H., Murry, S. J., Zhang, D., and Pei, S. S., IEEE Photonics Technol. Lett. 9, 734 (1997).Google Scholar
5. Ashley, T., Elliott, C. T., Jeffries, R., Johnson, A. D., Pryce, G. J., White, A. M., and Carroll, M., Appl. Phys. Lett. 70, 931 (1997).Google Scholar
6. Lee, H., York, P. K., Menna, R. J., Martinelli, R. U., Garbuzov, D. Z., Narayan, S. Y., and Connolly, J. C., Appl. Phys. Lett. 66, 1942 (1995).Google Scholar
7. Kurtz, S. R., Allerman, A. A., and Biefeld, R. M., Appl. Phys. Lett. 70, 3188 (1997).Google Scholar
8. Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., and Cho, A.Y., Science 264, 553 (1994). J. Faist, F. Capasso, C. Sirtori, D.L. Sivco, A.L. Hutchinson, and A.Y. Cho, Electron. Lett. 32, 560 (1996).Google Scholar
9. Flatté, M. E., Olesberg, J. T., Anson, S. A., Boggess, T. F., Hasenberg, T. C., Miles, R. H., and Grein, C. H., Appl. Phys. Lett. 70, 3212 (1997).Google Scholar
10. Olesberg, J. T., Anson, S. A., McCahon, S. W., Flatté, M. E., Boggess, T. F., Chow, D. H., and Hasenberg, T. C., Appl. Phys. Lett. 72, 229 (1998).Google Scholar
11. Grein, C.H., Young, P.M., Flatté, M.E., and Ehrenreich, H., J. Appl. Phys. 78, 7143 (1995).Google Scholar
12. Flatté, M. E., Hasenberg, T. C., Olesberg, J. T., Anson, S. A., Boggess, T. F., Yan, C., and McDaniel, D. L., Jr., Appl. Phys. Lett. 71, 3764 (1997).Google Scholar
13. Vodopyanov, K. L., Graener, H., Phillips, C. C., and Tate, T. J., Phys. Rev. B 46, 13194 (1992).Google Scholar
14. Brand, S. and Abram, R. A., J. Phys. C 17, L571 (1984).Google Scholar
15. Haug, A., J. Phys. C 16, 4159 (1983).Google Scholar
16. Chazapis, V., Blom, H. A., Vodopyanov, K. L., Norman, A. G., and Phillips, C. C., Phys. Rev. B 52, 2516 (1995).10.1103/PhysRevB.52.2516Google Scholar