Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-17T18:40:51.948Z Has data issue: false hasContentIssue false

Theoretical Studies of Electronic Intersubband Transitions in n-Type Doped Quantum Wells for Infrared Photodetector Applications

Published online by Cambridge University Press:  10 February 2011

Danhong Huang
Affiliation:
Phillips Laboratory (PL/VTMR), 3550 Aberdeen Avenue Southeast, Building 426, Kirtland Air Force Base, New Mexico 87117
M. O. Manasreh
Affiliation:
Phillips Laboratory (PL/VTMR), 3550 Aberdeen Avenue Southeast, Building 426, Kirtland Air Force Base, New Mexico 87117
Get access

Abstract

A self-consistent (8 × 8)-k · P model based on the Kohn-Sham density-functional formalism is used to calculate the quasi-particle wave functions and energy levels in n-type doped quantum wells. The self-energy from electron-electron, electron-impurity, and electron-phonon scattering was included in the calculation. The electronic intersubband absorption was calculated using a generalized self-consistent-field method including the vertex correction. The theoretical approach was applied to explain the variation of the intersubband transition peak energies as the temperature or the electron density is changed. Good agreement between the theory and experiment was achieved. The present theoretical model was also applied to design two-colors quantum well infrared photodetectors and was found to agree with the experimental measurements. Based on the numerical calculation, an approach to realize the three-colors infrared photodetectors in the triple-coupled quantum wells was proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Manasreh, M. O., Szmulowicz, F., Fischer, D. W., Evans, K. R., and Stutz, C. E., Appl. Phys. Lett. 57, 1790 (1990).Google Scholar
2. Manasreh, M. O. and Loehr, J. P. in Semiconductor Quantum Wells and Superlattices for Long Wavelength Infrared Detection, (Artech, Boston, 1993), Chap. 2.Google Scholar
3. Manasreh, M. O., Szmulowicz, F., Vaughan, T., Evans, K. R., Stutz, C. E., and Fischer, D. W., Phys. Rev. B 43, 9996 (1991).Google Scholar
4. vonllmen, P., et al., Semi. Sci. and Technol. 3, 1211 (1988); Superlattices and Microstructures 5, 259 (1989).Google Scholar
5. Bandara, K., Coon, D. D., Byungsung, O., Lin, Y. F., and Francombe, M. H., Appl. Phys. Lett. 53, 1931 (1988).Google Scholar
6. Szmulowicz, F., Manasreh, M. O., Stutz, C. E., and Vaughan, T., Phys. Rev. B50, 11618 (1994).Google Scholar
7. Gumbs, G., Huang, D., and Loehr, J. P., Phys. Rev. B 51, 4321 (1995).Google Scholar
8. Zalużny, M., Solid State Commun. 82, 565 (1992).Google Scholar
9. Zalużny, M., Phys. Rev. B43, 4511 (1991).Google Scholar
10. Huang, D. H., Gumbs, G., and Monasreh, M. O., Phys. Rev. B52, 14126 (1995).Google Scholar
11. Kim, , Forrest, S. R., Lange, M. J., Olsen, G. H., and Cohen, M. J., IEEE Photon. Technol. Lett. PFL- 6, 235 (1994).Google Scholar
12. Chen, M. C. and Bevan, M. J., J. Appl. Phys. 78, 4787 (1995).Google Scholar
13. Huang, Y and Lien, C., J. Appl. Phys. 77, 3433 (1995).Google Scholar
14. Köck, A., Górnik, E., Abstreiter, G., Böhm, G., Walther, M., and Weimann, G., Appl. Phys. Lett. 60, 2011 (1992).Google Scholar
15. Chen, M. C. and Bevan, M. J., J. Appl. Phys. 78, 4787 (1995).Google Scholar
16. Chen, C. J., Choi, K. K., Tidrow, M. Z., and Tsui, D. C., Appl. Phys. Lett. 68, 1446 (1996).Google Scholar
17. Zhang, Y., Jiang, D. S., Xia, J. B, Cui, L. Q., Song, C. Y., and Zhou, Z. Q., Appl. Phys. Lett. 68, 2114 (1996).Google Scholar
18. Gravé, I., Shakouri, A., Kuze, N., and Yariv, A., Appl. Phys. Lett. 60, 2362 (1992).Google Scholar
19. Tsai, K. L., Chang, K. H., Lee, C. P., Huang, K. F., Tsang, J. S., and Chen, H. R., Appl. Phys. Lett. 62, 3504 (1993).Google Scholar
20. Parihar, S. R., Lyon, S. A., Santos, M., and Shayegan, M., Appl. Phys. Lett. 55, 2417 (1989).Google Scholar
21. Choi, K. K., Levine, B. F., Bethea, C. G., Walker, J., and Malik, R. J., Phys. Rev. B 39, 8029 (1989).Google Scholar
22. Berger, V., Vodjdani, N., Bois, P., Vinter, B., and Delaitre, S., Appl. Phys. Lett. 61, 1898 (1992).Google Scholar
23. Huang, Y. and Lien, C., J. Appl. Phys. 77, 3433 (1995).Google Scholar
24. Schneider, H., Schönbeinm, C., and Bihlmann, , Appl. Phys. Lett. 68, 1832 (1996).Google Scholar
25. Stiebig, H., Giehl, J., Knipp, D., Rieve, P., and Böhm, M, Mat. Res. Soc. Symp. Proc. 377, 815 (1995).Google Scholar
26. Giehl, J., Zhu, Q., Rieve, P., and Böhm, M., “Transient Behavior of Color Diodes”, Mat. Res. Soc. Symp. Proc, 1996 (to be published).Google Scholar
27. Kheng, K., Ramsteiner, M., Schneider, H., Ralston, J. D., Fuchs, F., and Koidl, P., Appl. Phys. Lett. 61, 666 (1992).Google Scholar
28. Wang, Y. H. and Li, S. S., Appl. Phys. Lett. 62, 93 (1993).Google Scholar
29. Huang, D. H. and Manasreh, M. O., Phys. Rev. B 54, 5620, 1996.Google Scholar
30. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
31. Bahder, T. B., Phys. Rev. B 41, 11992, 1990.Google Scholar
32. Hedin, L. and Lundqvist, B. I., J. Phys. C 4, 2064 (1971).Google Scholar
33. Tomita, A., Phys. Rev. B 54, 5609, 1996.Google Scholar
34. Ando, T., Fowler, A. B., and Stern, F., Rev. Mod. Phys. 54, 437 (1982).Google Scholar
35. Mahan, G. D., Many-Particle Physics (Plenum, New York, 1981), Chap. 5.Google Scholar
36. Tselis, A. C. and Quinn, J. J., Phys. Rev. B 29, 3318 (1984).Google Scholar