Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-17T18:35:20.286Z Has data issue: false hasContentIssue false

The Theory of Rare-Earth Impurities in Semiconductors

Published online by Cambridge University Press:  21 February 2011

Michel Lannoo
Affiliation:
Institut d'Electronique et de Microélectronique du Nord (U.M.R. CNRS 9929), Département ISEN, 41, boulevard Vauban, 59046 Lille Cedex, France
C. Delerue
Affiliation:
Institut d'Electronique et de Microélectronique du Nord (U.M.R. CNRS 9929), Département ISEN, 41, boulevard Vauban, 59046 Lille Cedex, France
Get access

Abstract

The chemical trends of rare-earth impurities in semiconductors are analyzed on the basis of a selfconsistent tight-binding Green's function technique. The 4f states are treated as a frozen core and we get essentially no 5d derived states in the gap. We calculate the 4f ionization levels in the solid and conclude that the stable state is mostly 3+. We then describe the results of a LDA calculation for Er in silicon which we find to be stable in the interstitial position. Finally we consider in some detail the case of Yb in InP where we discusss the possible origin of the shallow gap levels and the mechanisms for luminescence excitation and quenching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

1. Masterov, V.F. and Zakharenkov, L.F., Soy. Phys. Semicond., 24, 383 (1990).Google Scholar
2. Takahei, K., Proceedings of the 21th International Conference on the Physics of Semiconductors, Beijing (1992).Google Scholar
3. Hemstreet, L.A., in Material Science Forum, edited by Bardeleben, H.J. von (Trans. Tech. Publications, Switzerland 1986), Vols. 10–12, p. 85.Google Scholar
4. Delerue, C. and Lannoo, M., Phys. Rev. Lett., 67, 3006 (1991).Google Scholar
5. Wybourne, B.G., Spectroscopic Properties of Rare Earths, Interscience Publishers, John Wiley and Sons, Inc., New-York (1965).Google Scholar
6. Herbst, J.F., Lowy, D.N. and Watson, R.E., Phys. Rev. B 6, 1913 (1972); J.F.Herbst, R.E. Watson and J.W. Wilkins, Phys. Rev. B 13, 1439 (1976) and 17, 3089 (1978).Google Scholar
7. Valence fluctuations in Solids, edited by Falicov, L.M. et al. , North Holland, Amsterdam, (1981).Google Scholar
8. Delerue, C., Lannoo, M. and Allan, G., Phys; Rev. B 39, 1669 (1989).Google Scholar
9. Picoli, G., Chomette, A. and Lannoo, M., Phys. Rev. B 30, 7138 (1984).Google Scholar
10. Herman, F. and Skillman, S., Atomic Structure Calculations, Prentice Hall, New York, (1963).Google Scholar
11. Wolfsberg, M. and Helmholtz, L., J. Chem. Phys. 20, 837 (1952).Google Scholar
12. Delerue, C. and Lannoo, M., to be published.Google Scholar
13. Langer, J., to be published.Google Scholar
14. Lambert, B., Corre, A. Le, Toudic, Y., Lhomer, C., Grandpierre, G. and Gauneau, M., J. Phys. Condensed Matter, 2, 479 (1990).Google Scholar
15. Pomrenke, G., Ennen, H., and Haydl, W., J. Appl. Phys., 59, 601 (1986).Google Scholar
16. Ennen, M. and Schneider, J., in Proceedings of the Thirteenth International Conference on Defects in Semiconductors, Coronado, CA, 1984, edited by Kimerling, L.C. and Parsey, J.M. (Metallurgical Society of AIME, New York, 1985), Vol. 14a, p. 115.Google Scholar
17. Ennen, H., Wagner, J., Mueller, H.D. and Smith, R.S., J. Appl. Phys., 61, 4877 (1987).Google Scholar
18. Wagner, J., Ennen, H., and Muiler, H.D., J. Appi. Phys., 59, 1202 (1986).Google Scholar
19. Kasatkin, V.A., Kesumanly, F.P., and Samorukov, B.E., Fiz. Tekh. Poluprovodn. 15, 616 (1981) [Sov.Phys. Semicond. 15, 352 (1981)].Google Scholar
20. Ennen, H., Pomrenke, G., and Axmann, A., J. Appi. Phys., 57, 2182 (1985).Google Scholar
21. Lambert, B., Toudic, Y., Grandpierre, G., Rupert, A., and Corre, A. Le, Electron. Lett., 24, 1446 (1988).Google Scholar
22. Aszodi, G., Weber, J., Vihlein, Ch., Pu-Lin, L., Hennen, H., Kaufhian, U., Schneider, J., and Windscheif, J., Phys. Rev. B 31, 7767 (1985).Google Scholar
23. Kröber, W. and Hangleiter, A., Appl. Phys. Lett., 52, 114 (1988).Google Scholar
24. Klein, P.B., Solid State Commun., 65, 1097 (1988).Google Scholar
25. Boyn, R., Phys. Status Solidi, 148, 11 (1988).Google Scholar
26. Title, R.S., in Physics and Chemistry of II-VI Compounds, edited by Aven, M. and Prener, J.S., (North-Holland, Amsterdam, 1967).Google Scholar
27. Godlewski, M. and Hommel, D., Phys. Status Solidi (a), 95, 261 (1986).Google Scholar
28. Przybylinska, H., Godlewski, M., and Stapor, A., in Proceedings of the Twenty-Sixth School on the Physics of Semiconductor Compounds, Jaszowiec (Polish Scientific, Krakow, 1987).Google Scholar
29. Needels, M., Schluter, M. and Lannoo, M., Phys. Rev., to be published.Google Scholar
30. Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.H., Poate, J.M., and Kimerling, L.C., J. Appl. Phys., 70, 2672 (1991).Google Scholar
31. Benton, J.L., Michel, J., Kimerling, L.C., Jacobson, D.C., Xie, Y.H., Eaglesham, D.J., Fitzgerald, E.A. and Poate, J.M., J. Appl. Phys., 70, 2667 (1991).Google Scholar
32. Kleinman, L. and Bylander, D.M., Phys. Rev. Lett., 48, 1425 (1982); D.C. Allan and M.P. Teter, Phys. Rev. Lett., 59, 1136 (1987); A.M. Rappe, K.M. Rabe, E. Kaxiras, and J.D. Joannopoulos, Phys. Rev. B 41, 1227 (1990).Google Scholar
33. Car, R. and Parrinello, M., Phys. Rev. Lett., 55, 2471 (1985).Google Scholar
34. Moore, C.E., Ed., Atomic Energy Levels, U.S. Government Printing Office, Washington, DC, (1971).Google Scholar
35. Eaglesham, D.J., private communication.Google Scholar
36. Tang, Y.S., Zhang, J., Heasman, K.C., and Sealy, B.J., Sol. St. Com. 72, 72 (1989).Google Scholar
37. Kozanecki, A. and Grotzschel, R., J. Appl. Phys., 68, 517 (1990).Google Scholar
38. Whitney, P.S., Uwai, K., Nakagome, H. and Takahei, K., Appl. Phys. Lett., 53, 2074 (1988).Google Scholar
39. Seghier, D., Benyattou, T., Bremond, G., Ducroquet, F., Gregoire, J., Guillot, G., Lhomer, C., Lambert, B., Toudic, Y. and Corre, A. Le, Appl. Phys. Lett., 60, 983 (1992).Google Scholar
40. Takahei, K., Taguchi, A., Nakagome, H. and Whitney, P.S., J. Appl. Phys., 66, 4941 (1989).Google Scholar
41. Heijmink Liesert, B.J., Godlewski, M., Stapor, A., Gregorkiewicz, T., Ammerlaan, C.A.J., Weber, J., Moser, M. and Scholz, F., Appl. Phys. Lett., 58, 2237 (1991).Google Scholar
42. Heijmink, B.J. Liesert, Godlewski, M., Gregorkiewicz, T. and Ammerlaan, C.A.J., Appl. Phys. Lett., 59, 3279 (1991).Google Scholar
43. Kozanecki, A.; Karpinska, K. and Kalinski, Z., Appl. Phys. Lett., 62, 84 (1993).Google Scholar
44. Taguchi, A., Taniguchi, M. and Takahei, K., Appl. Phys. Lett., 60, 965 (1992).Google Scholar